Li Neuton, Zhang Jihua, Neshev Dragomir N, Sukhorukov Andrey A
ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia.
Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, P.R. China.
Nanophotonics. 2024 Jun 5;13(18):3363-3372. doi: 10.1515/nanoph-2024-0137. eCollection 2024 Aug.
Sum frequency generation (SFG) has multiple applications, from optical sources to imaging, where efficient conversion requires either long interaction distances or large field concentrations in a quadratic nonlinear material. Metasurfaces provide an essential avenue to enhanced SFG due to resonance with extreme field enhancements with an integrated ultrathin platform. In this work, we formulate a general theoretical framework for multi-objective topology optimization of nanopatterned metasurfaces that facilitate high-efficiency SFG and simultaneously select the emitted direction and tailor the metasurface polarization response. Based on this framework, we present novel metasurface designs showcasing ultimate flexibility in transforming the outgoing nonlinearly generated light for applications spanning from imaging to polarimetry. For example, one of our metasurfaces produces highly polarized and directional SFG emission with an efficiency of over 0.2 cm GW in a 10 nm signal operating bandwidth.
和频产生(SFG)有多种应用,从光源到成像,在这些应用中,高效转换需要在二次非线性材料中有较长的相互作用距离或较大的场强。超表面提供了一条增强SFG的重要途径,因为它能与集成超薄平台上的极端场增强产生共振。在这项工作中,我们为纳米图案化超表面的多目标拓扑优化制定了一个通用理论框架,该框架有助于实现高效SFG,同时选择发射方向并调整超表面的偏振响应。基于此框架,我们展示了新颖的超表面设计,这些设计在将出射的非线性产生光转换用于从成像到偏振测量等各种应用方面展现出了极致的灵活性。例如,我们的一种超表面在10纳米信号工作带宽内产生高度偏振且定向的SFG发射,效率超过0.2厘米·吉瓦。