Miura Hideharu, Tanooka Masao, Ishihara Soichiro, Kenjo Masahiro, Nakao Minoru, Ozawa Shuichi, Kagemoto Masayuki
Department of Radiation Oncology, Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, JPN.
Department of Radiation Oncology, Hiroshima University, Institute of Biomedical & Health Sciences, Hiroshima, JPN.
Cureus. 2024 Nov 4;16(11):e72978. doi: 10.7759/cureus.72978. eCollection 2024 Nov.
Purpose We developed a volumetric quantitative evaluation software called vector volume histogram (VVH) to evaluate respiratory-induced organ motion using deformable image registration (DIR). Methods The B-spline-based DIR algorithm was used to compute the deformation vector field (DVF), which included the DVF (left-right), DVF (anterior-posterior), and DVF (craniocaudal). The VVH software was written as a plug-in using Python, thus allowing anyone to easily modify the code. A shifted target within the moving phantom was used to evaluate the performance of the VVH software. The 2 cm diameter target was systematically shifted by 5, 10, 15, and 20 mm in the CC direction. To evaluate respiration-induced target motion, the VVH method was applied during the inhalation and exhalation phases of 4D CT scans in a patient with lung cancer. Length at 5% volume (L) and length at 50% volume (L) were calculated to evaluate the target motion. Results In the phantom study, the VVH software accurately measured target displacements with L and L values of 5.4 mm and 4.8 mm, 10.4 mm and 9.8 mm, 14.9 mm, and 14.6 mm, and 19.9 mm and 19.6 mm for 5, 10, 15 and 20 mm displacements, respectively. For the lung cancer patient study, the VVH method showed target motion with L and L values of 1.9 mm and 1.8 mm in LR, 1.9 mm and 0.9 mm in AP, 18.8 mm and 15.8 mm in CC, and 18.9 mm and 15.8 mm in 3D vector. The centroid method measured respiratory tumor motion between the inhalation and exhalation phases as 0.5 mm, 0.7 mm, 13.5 mm, and 13.5 mm in the LR, AP, and CC directions and in the 3D vector. Conclusions The VVH software provided a volumetric quantitative assessment of respiratory-induced target motion and may provide strategic decisions for clinical use at the time of treatment planning.
目的 我们开发了一种名为矢量体积直方图(VVH)的容积定量评估软件,以使用可变形图像配准(DIR)来评估呼吸引起的器官运动。方法 基于B样条的DIR算法用于计算变形矢量场(DVF),其中包括DVF(左右)、DVF(前后)和DVF(头脚)。VVH软件使用Python编写为插件,因此任何人都可以轻松修改代码。使用移动体模内的移位目标来评估VVH软件的性能。将直径2 cm的目标在头脚方向上系统地移位5、10、15和20 mm。为了评估呼吸引起的目标运动,在一名肺癌患者的4D CT扫描的吸气和呼气阶段应用VVH方法。计算5%体积时的长度(L)和50%体积时的长度(L)以评估目标运动。结果 在体模研究中,对于5、10、15和20 mm的位移,VVH软件分别以L和L值5.4 mm和4.8 mm、10.4 mm和9.8 mm、14.9 mm和14.6 mm以及19.9 mm和19.6 mm准确测量了目标位移。对于肺癌患者研究,VVH方法显示目标运动在左右方向上L和L值分别为1.9 mm和1.8 mm,前后方向上为1.9 mm和0.9 mm,头脚方向上为18.8 mm和15.8 mm,三维矢量方向上为18.9 mm和15.8 mm。质心方法测量的吸气和呼气阶段之间的呼吸肿瘤运动在左右、前后和头脚方向以及三维矢量方向上分别为0.5 mm、0.7 mm、13.5 mm和13.5 mm。结论 VVH软件提供了对呼吸引起的目标运动的容积定量评估,并可能在治疗计划时为临床应用提供战略决策。