Suppr超能文献

基于 T1w TR-4DMRI 作为引导的 T2 加权(T2w)时间分辨(TR)4D MRI 重建的超分辨率框架。

A super-resolution framework for the reconstruction of T2-weighted (T2w) time-resolved (TR) 4DMRI using T1w TR-4DMRI as the guidance.

机构信息

Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.

Philips Healthcare, MR Therapy, Cleveland, OH, USA.

出版信息

Med Phys. 2020 Jul;47(7):3091-3102. doi: 10.1002/mp.14136. Epub 2020 Apr 18.

Abstract

PURPOSE

The purpose of this study was to develop T2-weighted (T2w) time-resolved (TR) four-dimensional magnetic resonance imaging (4DMRI) reconstruction technique with higher soft-tissue contrast for multiple breathing cycle motion assessment by building a super-resolution (SR) framework using the T1w TR-4DMRI reconstruction as guidance.

METHODS

The multi-breath T1w TR-4DMRI was reconstructed by deforming a high-resolution (HR: 2 × 2 × 2 mm ) volumetric breath-hold (BH, 20s) three-dimensional magnetic resonance imaging (3DMRI) image to a series of low-resolution (LR: 5 × 5 × 5 mm ) 3D cine images at a 2Hz frame rate in free-breathing (FB, 40 s) using an enhanced Demons algorithm, namely [T1 →FB] reconstruction. Within the same imaging session, respiratory-correlated (RC) T2w 4DMRI (2 × 2 × 2 mm ) was acquired based on an internal navigator to gain HR T2w (T2 ) in three states (full exhalation and mid and full inhalation) in ~5 min. Minor binning artifacts in the RC-4DMRI were automatically identified based on voxel intensity correlation (VIC) between consecutive slices as outliers (VIC < VIC -σ) and corrected by deforming the artifact slices to interpolated slices from the adjacent slices iteratively until no outliers were identified. A T2 image with minimal deformation (<1 cm at the diaphragm) from the T1 image was selected for multi-modal B-Spline deformable image registration (DIR) to establish the T2 -T1 voxel correspondence. Two approaches to reconstruct T2w TR-4DMRI were investigated: (A) T2 →[T1 →FB]: to deform T2w HR to T1w BH only as T1w TR-4DMRI was reconstructed, and combine the two displacement vector fields (DVFs) to reconstruct T2w TR-4DMRI, and (B) [T2 ←T1 ]→FB: to deform T1w BH to T2w HR first and apply the deformed T1w BH to reconstruct T2w TR-4DMRI. The reconstruction times were similar, 8-12 min per volume. To validate the two methods, T2w- and T1w-mapped 4D XCAT digital phantoms were utilized with three synthetic spherical tumors (ϕ = 2.0, 3.0, and 4.0 cm) in the lower or mid lobes as the ground truth to evaluate the tumor location (the center of mass, COM), size (volume ratio, %V), and shape (Dice index). Six lung cancer patients were scanned under an IRB-approved protocol and the T2w TR-4DMRI images reconstructed from the two methods were compared based on the preservation of the three tumor characteristics. The local tumor-contained image quality was also characterized using the VIC and structure similarity (SSIM) indexes.

RESULTS

In the 4D digital phantom, excellent tumor alignment after T2 -T1 DIR is achieved: ∆COM = 0.8 ± 0.5 mm, %V = 1.06 ± 0.02, and Dice = 0.91 ± 0.03, in both deformation directions using the DIR-target image as the reference. In patients, binning artifacts are corrected with improved image quality: average VIC increases from 0.92 ± 0.03 to 0.95 ± 0.01. Both T2w TR-4DMRI reconstruction methods produce similar tumor alignment errors ∆COM = 2.9 ± 0.6 mm. However, method B ([T2 ←T1 ]→FB) produces superior results in preserving more T2w tumor features with a higher %V = 0.99 ± 0.03, Dice = 0.81 ± 0.06, VIC = 0.85 ± 0.06, and SSIM = 0.65 ± 0.10 in the T2w TR-4DMRI images.

CONCLUSIONS

This study has demonstrated the feasibility of T2w TR-4DMRI reconstruction with high soft-tissue contrast and adequately-preserved tumor position, size, and shape in multiple breathing cycles. The T2w-centric DIR (method B) produces a superior solution for the SR-based framework of T2w TR-4DMRI reconstruction with highly preserved tumor characteristics and local image features, which are useful for tumor delineation and motion management in radiation therapy.

摘要

目的

本研究旨在开发一种具有更高软组织对比度的 T2 加权(T2w)时分辨(TR)四维磁共振成像(4DMRI)重建技术,通过使用 T1w TR-4DMRI 重建作为指导构建超分辨率(SR)框架,对多个呼吸周期的运动进行评估。

方法

通过使用增强的 Demons 算法,将高分辨率(HR:2×2×2mm)容积屏气(BH,20s)三维磁共振成像(3DMRI)图像变形为低分辨率(LR:5×5×5mm)3D 电影图像系列,在自由呼吸(FB,40s)中以 2Hz 的帧率进行重建,即[T1→FB]重建。在同一成像过程中,基于内部导航仪获取呼吸相关(RC)T2w 4DMRI(2×2×2mm),以在约 5 分钟内获得三个状态(完全呼气和中、完全吸气)的 HR T2w(T2)。通过对连续切片之间的体素强度相关性(VIC)进行自动识别,将 RC-4DMRI 中的小-bin 伪影作为异常值(VIC<VIC-σ),并通过将异常值的切片变形为相邻切片的插值切片来进行校正。从 T1 图像中选择一个变形最小(膈肌处<1cm)的 T2 图像,用于多模态 B 样条变形图像配准(DIR),以建立 T2-T1 体素对应关系。研究了两种重建 T2w TR-4DMRI 的方法:(A)T2→[T1→FB]:仅对 T2w HR 进行变形以重建 T1w BH,然后组合两个位移向量场(DVFs)以重建 T2w TR-4DMRI,和(B)[T2←T1]→FB:先对 T1w BH 进行变形以重建 T2w HR,然后应用变形后的 T1w BH 来重建 T2w TR-4DMRI。两种方法的重建时间相似,每个容积的重建时间为 8-12 分钟。为了验证这两种方法,使用 T2w 和 T1w 映射的 4D XCAT 数字体模,以及在下叶或中叶的三个合成球形肿瘤(ϕ=2.0、3.0 和 4.0cm)作为地面真实来评估肿瘤位置(质心,COM)、大小(体积比,%V)和形状(Dice 指数)。对 6 名肺癌患者进行了扫描,并根据三种肿瘤特征的保留情况对两种方法重建的 T2w TR-4DMRI 图像进行了比较。还使用体素强度相关性(VIC)和结构相似性(SSIM)指数来评估局部肿瘤包含的图像质量。

结果

在 4D 数字体模中,通过 T2-T1 DIR 实现了肿瘤的精确配准:在两个变形方向上,以 DIR-目标图像为参考,COM 的偏差为 0.8±0.5mm,%V 为 1.06±0.02,Dice 为 0.91±0.03。在患者中,校正了 binning 伪影,提高了图像质量:平均 VIC 从 0.92±0.03 增加到 0.95±0.01。两种 T2w TR-4DMRI 重建方法产生的肿瘤配准误差相似,COM 偏差为 2.9±0.6mm。然而,方法 B([T2←T1]→FB)在保留更多 T2w 肿瘤特征方面产生了更好的结果,具有更高的%V=0.99±0.03、Dice=0.81±0.06、VIC=0.85±0.06 和 SSIM=0.65±0.10 的 T2w TR-4DMRI 图像。

结论

本研究证明了具有高软组织对比度和充分保留肿瘤位置、大小和形状的 T2w TR-4DMRI 重建的可行性。基于 T2w 的 DIR(方法 B)产生了一种更优的解决方案,用于基于 SR 的 T2w TR-4DMRI 重建框架,具有高度保留的肿瘤特征和局部图像特征,这对于放射治疗中的肿瘤勾画和运动管理非常有用。

相似文献

引用本文的文献

本文引用的文献

5
Channel Splitting Network for Single MR Image Super-Resolution.用于单幅磁共振图像超分辨率的通道分割网络
IEEE Trans Image Process. 2019 Nov;28(11):5649-5662. doi: 10.1109/TIP.2019.2921882. Epub 2019 Jun 14.
8
Super-resolution T2-weighted 4D MRI for image guided radiotherapy.用于图像引导放射治疗的超高分辨率 T2 加权 4D MRI。
Radiother Oncol. 2018 Dec;129(3):486-493. doi: 10.1016/j.radonc.2018.05.015. Epub 2018 Jun 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验