Suppr超能文献

利用倍温电路和自适应光子设计从昼夜循环中进行能量采集。

Energy scavenging from the diurnal cycle with a temperature-doubler circuit and a self-adaptive photonic design.

作者信息

Zhang Zheng, Zhao Xiaodong, Chen Zhen

机构信息

Jiangsu Key Laboratory for Design & Manufacture or Micro/Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 210096, China.

出版信息

Nanophotonics. 2024 Jan 15;13(5):687-699. doi: 10.1515/nanoph-2023-0695. eCollection 2024 Mar.

Abstract

A temperature-doubler circuit is the functional equivalent of a voltage-doubler in the thermal domain. Effective temperature-doubler circuits could benefit energy scavenging from fluctuating thermal resources, e.g. the diurnal cycle. However, the current paradigm relies on static photonic designs of the selective solar absorber or blackbody emitter, which aims at maximizing energy harvesting from either the sun or outer space, but not from both. Furthermore, photonic and thermal optimizations have not yet been coupled to maximize the power output. Here we develop a general framework to optimize the energy acquisition and conversion simultaneously to maximize a temperature-doubler's power output under a realistic solar-thermal boundary condition. With an ideal self-adaptive absorber/emitter to fully exploit the thermodynamic potential of both the sun and outer space, the theoretical limit of the temperature-doubler circuit's average output power in a diurnal cycle is found to be 168 W m, a 12-fold enhancement as compared to the blackbody emitter. We provide a numerical design of such a self-adaptive absorber/emitter, which, combined with a thermoelectric generator, generate 2.3 times more power than the blackbody emitter in a synthetic "experiment". The model further reveals that, as compared to traditional thermal circuits, the key merit of the temperature-doubler is not to enhance the total power generation, but to convert the fluctuating thermodynamic input to a continuous and stable power output in a 24 h day-night cycle.

摘要

温度倍升电路在热领域的功能等同于电压倍升电路。有效的温度倍升电路可受益于从波动的热资源(例如昼夜循环)中进行能量收集。然而,当前的范例依赖于选择性太阳能吸收器或黑体发射器的静态光子设计,其旨在使从太阳或外层空间的能量收集最大化,而非同时从两者中实现最大化。此外,光子和热优化尚未结合起来以最大化功率输出。在此,我们开发了一个通用框架,以在实际的太阳 - 热边界条件下同时优化能量获取和转换,从而使温度倍升器的功率输出最大化。通过理想的自适应吸收器/发射器充分利用太阳和外层空间的热力学潜力,发现温度倍升电路在昼夜循环中的平均输出功率理论极限为168 W/m²,与黑体发射器相比提高了12倍。我们提供了这种自适应吸收器/发射器的数值设计,其与热电发电机相结合,在一个模拟“实验”中产生的功率比黑体发射器多2.3倍。该模型进一步揭示,与传统热电路相比,温度倍升器的关键优点不是提高总发电量,而是在24小时昼夜循环中将波动的热力学输入转换为连续稳定的功率输出。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验