Gao Jiannan, Vincenti Maria Antonietta, Frantz Jesse, Clabeau Anthony, Qiao Xingdu, Feng Liang, Scalora Michael, Litchinitser Natalia M
Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708, USA.
Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy.
Nanophotonics. 2022 May 30;11(17):4027-4035. doi: 10.1515/nanoph-2022-0078. eCollection 2022 Sep.
We demonstrate a simple, femtosecond-scale wavelength tunable, subwavelength-thick nanostructure that performs efficient wavelength conversion from the infrared to the ultraviolet. The output wavelength can be tuned by varying the input power of the infrared pump beam and/or relative delay of the control beam with respect to the pump beam, and does not require any external realignment of the system. The nanostructure is made of chalcogenide glass that possesses strong Kerr nonlinearity and high linear refractive index, leading to strong field enhancement at Mie resonances. Although, as many other materials, chalcogenide glasses absorb in the ultraviolet range, fundamental phase-locking mechanism between the pump and the inhomogeneous portion of the third-harmonic signal enables ultraviolet transmission with little or no absorption.
我们展示了一种简单的、飞秒级波长可调谐的亚波长厚度纳米结构,它能实现从红外到紫外的高效波长转换。通过改变红外泵浦光束的输入功率和/或控制光束相对于泵浦光束的相对延迟,可以调谐输出波长,并且不需要对系统进行任何外部重新校准。该纳米结构由具有强克尔非线性和高线性折射率的硫族化物玻璃制成,导致在米氏共振处场强增强。尽管与许多其他材料一样,硫族化物玻璃在紫外范围内有吸收,但泵浦与三次谐波信号的非均匀部分之间的基本锁相机制使得紫外光能够在几乎没有吸收的情况下传输。