Xing Peng, Chen George Fengrong, Gao Hongwei, Chia Xavier, Agarwal Anuradha M, Kimerling Lionel C, Tan Dawn T H
Photonics Devices and System Group, Singapore University of Technology and Design, 8 Somapah Rd, Singapore 487372, Singapore.
Microphotonics Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
Nanophotonics. 2022 Jun 16;11(14):3269-3280. doi: 10.1515/nanoph-2022-0134. eCollection 2022 Jul.
Globally, the long-haul transmission of ultra-high bandwidth data is enabled through coherent communications. Driven by the rapid pace of growth in interconnectivity over the last decade, long-haul data transmission has reached capacities on the order of tens to hundreds of terabits per second, over fiber reaches which may span thousands of kilometers. Data center communications operate in regimes featuring shorter reaches and higher cost sensitivity. While integrated microresonator frequency combs are poised to revolutionize light sources used for high-speed data transmission over fiber, recent progress has focused largely on coherent detection schemes. Furthermore, though state-of-the-art intensity modulators are advancing in speed, it has not been demonstrated in the literature if microresonator-based comb lines can accommodate higher intensity modulated direction data (IMDD) line rates in tandem with these advancements. In this manuscript, we demonstrate the use of microresonator frequency combs pumped with a single laser for the transmission of high-speed IMDD data. We demonstrate error-free transmission of 30 Gbs per comb non-return-to-zero data over fiber lengths of 6 km, as well as bit error rates under the forward error correction limit for propagation through 20 km of optical fiber. 60 Gbs and 42 Gbs pulse modulation amplitude 4 (PAM4) data modulated on each frequency comb line is further quantified to have a bit error rate under the forward error correction limit for fiber reaches of up to 6 km and 20 km respectively. The results showcase CMOS-compatible microresonator frequency comb modulated using IMDD formats as a promising technology for high-speed transmission in the data center transceiver industry.
在全球范围内,超高速带宽数据的长距离传输是通过相干通信实现的。在过去十年互连性快速增长的推动下,长距离数据传输容量已达到每秒数十至数百太比特的量级,光纤传输距离可达数千公里。数据中心通信的工作范围具有较短的传输距离和较高的成本敏感性。虽然集成微谐振器频率梳有望彻底改变用于光纤高速数据传输的光源,但最近的进展主要集中在相干检测方案上。此外,尽管最先进的强度调制器在速度方面不断进步,但文献中尚未证明基于微谐振器的梳状线能否与这些进展同步适应更高的强度调制直接检测(IMDD)线路速率。在本论文中,我们展示了使用单激光泵浦的微谐振器频率梳来传输高速IMDD数据。我们展示了在6公里光纤长度上每个梳状非归零数据实现30 Gbs的无差错传输,以及在通过20公里光纤传播时前向纠错极限以下的误码率。进一步量化了在每个频率梳状线上调制的60 Gbs和42 Gbs脉冲幅度调制4(PAM4)数据,分别在长达6公里和20公里的光纤传输时误码率处于前向纠错极限以下。结果表明,采用IMDD格式调制的CMOS兼容微谐振器频率梳是数据中心收发器行业高速传输的一项有前景的技术。