Suppr超能文献

用于2.5 - 5太赫兹子带间光子学的高质量兼容CMOS的n型硅锗抛物量子阱

High-quality CMOS compatible n-type SiGe parabolic quantum wells for intersubband photonics at 2.5-5 THz.

作者信息

Campagna Elena, Talamas Simola Enrico, Venanzi Tommaso, Berkmann Fritz, Corley-Wiciak Cedric, Nicotra Giuseppe, Baldassarre Leonetta, Capellini Giovanni, Di Gaspare Luciana, Virgilio Michele, Ortolani Michele, De Seta Monica

机构信息

Dipartimento di Scienze, Università; degli Studi Roma Tre, Viale G. Marconi 446, Roma 00146, Italy.

Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy.

出版信息

Nanophotonics. 2024 Jan 15;13(10):1793-1802. doi: 10.1515/nanoph-2023-0704. eCollection 2024 Apr.

Abstract

A parabolic potential that confines charge carriers along the growth direction of quantum wells semiconductor systems is characterized by a single resonance frequency, associated to intersubband transitions. Motivated by fascinating quantum optics applications leveraging on this property, we use the technologically relevant SiGe material system to design, grow, and characterize n-type doped parabolic quantum wells realized by continuously grading Ge-rich Si Ge alloys, deposited on silicon wafers. An extensive structural analysis highlights the capability of the ultra-high-vacuum chemical vapor deposition technique here used to precisely control the quadratic confining potential and the target doping profile. The absorption spectrum, measured by means of Fourier transform infrared spectroscopy, revealed a single peak with a full width at half maximum at low and room temperature of about 2 and 5 meV, respectively, associated to degenerate intersubband transitions. The energy of the absorption resonance scales with the inverse of the well width, covering the 2.5-5 THz spectral range, and is almost independent of temperature and doping, as predicted for a parabolic confining potential. On the basis of these results, we discuss the perspective observation of THz strong light-matter coupling in this silicon compatible material system, leveraging on intersubband transitions embedded in all-semiconductor microcavities.

摘要

一种沿量子阱半导体系统生长方向限制电荷载流子的抛物线势由与子带间跃迁相关的单一共振频率表征。受利用此特性的迷人量子光学应用的启发,我们使用技术上相关的硅锗材料系统来设计、生长和表征通过在硅片上沉积连续渐变的富锗硅锗合金实现的n型掺杂抛物线量子阱。广泛的结构分析突出了此处使用的超高真空化学气相沉积技术精确控制二次限制势和目标掺杂分布的能力。通过傅里叶变换红外光谱测量的吸收光谱显示,在低温和室温下,与简并子带间跃迁相关的单峰半高宽分别约为2和5 meV。吸收共振能量与阱宽度的倒数成比例,覆盖2.5 - 5 THz光谱范围,并且几乎与温度和掺杂无关,这与抛物线限制势的预测一致。基于这些结果,我们讨论了在这种与硅兼容的材料系统中利用全半导体微腔中嵌入的子带间跃迁对太赫兹强光 - 物质耦合进行透视观察的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccfd/11502064/e37493172a9c/j_nanoph-2023-0704_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验