Suppr超能文献

利用共振TiO纳米结构动态选择可见波长。

Dynamic selection of visible wavelengths using resonant TiO nanostructures.

作者信息

Um Han-Don, Choi Deokjae, Solanki Amit, Huang Emerald, Seo Kwanyong, Habbal Fawwaz

机构信息

Department of Chemical Engineering, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea.

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.

出版信息

Nanophotonics. 2023 May 3;12(11):1995-2005. doi: 10.1515/nanoph-2023-0057. eCollection 2023 May.

Abstract

All-dielectric nanoarrays have strong electromagnetic resonances with various interesting applications and are tuned by adjusting their geometrical parameters. However, their optical properties are permanently encoded during fabrication. This study presents robust dynamically tunable all-dielectric nanoresonators for controllable, reversible, and reproducible color filtering. Our design uses an array of TiO nanodiscs embedded in a transparent, stretchable polydimethylsiloxane (PDMS) membrane and exhibits a narrow spectral response due to Mie magnetic and electric dipole resonances hybridized with the TiO nanodiscs lattice modes. By mechanically stretching the PDMS membrane, the pitch of the TiO nanodiscs was increased and the spectral location of the resonances was altered. Additionally, an optically asymmetric structure was fabricated by partially embedding TiO nanodiscs in PDMS. Thus, the magnitude of the Rayleigh anomaly diffraction, which could interrupt the dipole resonances, was reduced. Our design has sharp, frequency-tunable resonances in the visible spectrum, and we demonstrated dynamic tunability by stretching the metasurfaces.

摘要

全介质纳米阵列具有强烈的电磁共振,有各种有趣的应用,并且可通过调整其几何参数进行调谐。然而,它们的光学特性在制造过程中就被永久编码了。本研究提出了用于可控、可逆和可重复颜色过滤的稳健的动态可调全介质纳米谐振器。我们的设计使用嵌入透明、可拉伸聚二甲基硅氧烷(PDMS)膜中的TiO纳米盘阵列,由于与TiO纳米盘晶格模式杂化的米氏磁偶极和电偶极共振,呈现出窄光谱响应。通过机械拉伸PDMS膜,TiO纳米盘的间距增加,共振的光谱位置发生改变。此外,通过将TiO纳米盘部分嵌入PDMS中制造了一种光学不对称结构。因此,可中断偶极共振的瑞利异常衍射的幅度降低了。我们的设计在可见光谱中具有尖锐的、频率可调的共振,并且我们通过拉伸超表面展示了动态可调性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1de7/11501797/5203cf1b6137/j_nanoph-2023-0057_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验