Suppr超能文献

基于液-液相分离和铁死亡相关基因的肝细胞癌机器学习诊断模型

Machine Learning Diagnostic Model for Hepatocellular Carcinoma Based on Liquid-Liquid Phase Separation and Ferroptosis-Related Genes.

作者信息

Chen Wenchao, Zhu Ting, Pu Xiaofan, Zhao Linlin, Zhou Senhao, Zhong Xin, Wang Suihan, Lin Tianyu

机构信息

Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, China.

Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, China.

出版信息

Turk J Gastroenterol. 2024 Oct 7;36(2):89-99. doi: 10.5152/tjg.2024.24101.

Abstract

BACKGROUND/AIMS: Hepatocellular carcinoma (HCC) represents a primary liver malignancy with a multifaceted molecular landscape. The interplay between liquid-liquid phase separation (LLPS) and ferroptosis-a regulated form of cell death-has garnered interest in tumorigenesis. However, the precise role of LLPS and ferroptosis-related genes in HCC progression and prognosis remains obscure. Unraveling this connection could pave the way for innovative diagnosis and therapeutic strategies.

MATERIALS AND METHODS

The differentially expressed genes (DEGs) were identified based on 3 GEO datasets, followed by overlapping with LLPS-related and ferroptosis-related genes. Based on central hub genes, a diagnostic model was developed through LASSO regression and validated using KM survival analysis and real-time quantitative polymerase chain reaction (RT-qPCR). Then the effects of NRAS on the development of HCC and ferroptosis were also detected.

RESULTS

We identified 24 DEGs overlapping among HCC-specific, LLPS, and ferroptosis-related genes. A diagnostic model, centered on 5 hub genes, was developed and validated. Lower expression of these genes corresponded with enhanced patient survival rates, and they were distinctly overexpressed in HCC cells. NRAS downregulation significantly inhibited HepG2 cell proliferation and migration (P < .01). Fe2+ content and ROS levels were both significantly increased in the si-NRAS group when compared to those in the si-NC group (P < .01), while opposite results were observed for the protein level of GPX4 and GSH content.

CONCLUSION

The diagnostic model with 5 hub genes (EZH2, HSPB1, NRAS, RPL8, and SUV39H1) emerges as a potential innovative tool for the diagnosis of HCC. NRAS promotes the carcinogenesis of HCC cells and inhibits ferroptosis.

摘要

背景/目的:肝细胞癌(HCC)是一种具有多方面分子格局的原发性肝脏恶性肿瘤。液-液相分离(LLPS)与铁死亡(一种受调控的细胞死亡形式)之间的相互作用已引起人们对肿瘤发生的关注。然而,LLPS和铁死亡相关基因在HCC进展和预后中的精确作用仍不清楚。阐明这种联系可能为创新的诊断和治疗策略铺平道路。

材料与方法

基于3个基因表达综合数据库(GEO)数据集鉴定差异表达基因(DEG),然后与LLPS相关基因和铁死亡相关基因进行重叠。基于中心枢纽基因,通过套索回归建立诊断模型,并使用KM生存分析和实时定量聚合酶链反应(RT-qPCR)进行验证。然后还检测了NRAS对HCC发生发展和铁死亡的影响。

结果

我们在HCC特异性、LLPS和铁死亡相关基因中鉴定出24个重叠的DEG。建立并验证了一个以5个枢纽基因为中心的诊断模型。这些基因的低表达与患者生存率提高相关,并且它们在HCC细胞中明显过表达。NRAS下调显著抑制HepG2细胞增殖和迁移(P <.01)。与si-NC组相比,si-NRAS组的Fe2+含量和ROS水平均显著升高(P <.01),而GPX4蛋白水平和GSH含量则观察到相反的结果。

结论

具有5个枢纽基因(EZH2、HSPB1、NRAS、RPL8和SUV39H1)的诊断模型成为诊断HCC的潜在创新工具。NRAS促进HCC细胞的癌变并抑制铁死亡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/516b/11843271/620f550b5a3b/tjg-36-2-89_f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验