Suppr超能文献

提高慢性阻塞性肺疾病患者中α-1抗胰蛋白酶缺乏症的识别可能性:一种使用真实世界数据的新型预测模型

Improving the Likelihood of Identifying Alpha-1 Antitrypsin Deficiency Among Patients With COPD: A Novel Predictive Model Using Real-World Data.

作者信息

Pfeffer Daniel N, Dhakne Rahul, El Massad Omnya, Sehgal Pulkit, Ardiles Thomas, Calloway Michael O, Runken M Chris, Strange Charlie

机构信息

Data and Analytics, EVERSANA, Milwaukee, Wisconsin, United States.

Data and Analytics, EVERSANA, Pune, India.

出版信息

Chronic Obstr Pulm Dis. 2025 Jan 29;12(1):1-11. doi: 10.15326/jcopdf.2023.0491.

Abstract

BACKGROUND

Despite guideline recommendations, most patients with chronic obstructive pulmonary disease (COPD) do not undergo alpha-1 antitrypsin deficiency (AATD) testing and approximately 90% of people with AATD in the United States remain undiagnosed. This study sought to develop a predictive model using real-world data to improve detection of AATD-positive patients in the general COPD population.

METHODS

A predictive model using extreme gradient boosting was developed using the EVERSANA database, including longitudinal, patient-level medical claims, prescription claims, AATD-specific testing data, and electronic health records (EHR). The model was trained and then validated to predict AATD-positive status. Patients were coded as AATD positive based on the presence of any of the following criteria: (1) ≥2 AATD diagnosis codes in claims; (2) an AATD diagnosis code in the EHR; (3) a positive laboratory test for AATD; or (4) use of AATD-related medication. Over 500 variables were used to train the predictive model and >20 models were run to optimize the predictive power.

RESULTS

A total of 13,585 AATD-positive patients and 7796 AATD-negative patients were included in the model. The inclusion of non-AATD laboratory test results was critical for defining cohorts and optimizing model prediction (e.g., respiratory comorbidities, and calcium, glucose, hemoglobin, and bilirubin levels). The final model yielded high predictive power, with an area under the receiver operating characteristic curve of 0.9.

CONCLUSION

Predictive modeling using real-world data is a sound approach for assessing AATD risk and useful for identifying COPD patients who should be confirmed by genetic testing. External validation is warranted to further assess the generalizability of these results.

摘要

背景

尽管有指南建议,但大多数慢性阻塞性肺疾病(COPD)患者未接受α-1抗胰蛋白酶缺乏症(AATD)检测,在美国,约90%的AATD患者仍未被诊断出来。本研究旨在利用真实世界数据开发一种预测模型,以改善对一般COPD人群中AATD阳性患者的检测。

方法

使用EVERSANA数据库开发了一种采用极端梯度提升的预测模型,该数据库包括纵向的患者层面医疗理赔、处方理赔、AATD特异性检测数据和电子健康记录(EHR)。对该模型进行训练,然后验证其预测AATD阳性状态的能力。根据以下任何一项标准将患者编码为AATD阳性:(1)理赔中有≥2个AATD诊断代码;(2)EHR中有AATD诊断代码;(3)AATD实验室检测呈阳性;或(4)使用与AATD相关的药物。使用500多个变量来训练预测模型,并运行20多个模型以优化预测能力。

结果

模型共纳入13585例AATD阳性患者和7796例AATD阴性患者。纳入非AATD实验室检测结果对于定义队列和优化模型预测至关重要(例如,呼吸系统合并症以及钙、葡萄糖、血红蛋白和胆红素水平)。最终模型具有较高的预测能力,受试者工作特征曲线下面积为0.9。

结论

使用真实世界数据进行预测建模是评估AATD风险的合理方法,有助于识别应通过基因检测确诊的COPD患者。有必要进行外部验证以进一步评估这些结果的可推广性。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验