Suppr超能文献

关于守恒霍普夫分岔的振幅方程——推导、分析与评估

An amplitude equation for the conserved-Hopf bifurcation-Derivation, analysis, and assessment.

作者信息

Greve Daniel, Thiele Uwe

机构信息

Institut für Theoretische Physik, Universität Münster, Wilhelm-Klemm-Str. 9, 48149 Münster, Germany.

Center for Nonlinear Science (CeNoS), Universität Münster, Corrensstr. 2, 48149 Münster, Germany.

出版信息

Chaos. 2024 Dec 1;34(12). doi: 10.1063/5.0222013.

Abstract

We employ weakly nonlinear theory to derive an amplitude equation for the conserved-Hopf instability, i.e., a generic large-scale oscillatory instability for systems with two conservation laws. The resulting equation represents in the conserved case the equivalent of the complex Ginzburg-Landau equation obtained in the nonconserved case as an amplitude equation for the standard Hopf bifurcation. Considering first the case of a relatively simple symmetric two-component Cahn-Hilliard model with purely nonreciprocal coupling, we derive the nonlinear nonlocal amplitude equation with real coefficients and show that its bifurcation diagram and time evolution well agree with the results for the full model. The solutions of the amplitude equation and their stability are analytically obtained, thereby showing that in such oscillatory phase separation, the suppression of coarsening is universal. Second, we lift the two restrictions and obtain the amplitude equation in the generic case. It has complex coefficients and also shows very good agreement with the full model as exemplified for some transient dynamics that converges to traveling wave states.

摘要

我们运用弱非线性理论来推导守恒 - 霍普夫不稳定性的振幅方程,即具有两个守恒定律的系统的一种一般大规模振荡不稳定性。在守恒情形下,所得方程相当于在非守恒情形下作为标准霍普夫分岔的振幅方程所得到的复金兹堡 - 朗道方程。首先考虑具有纯非互易耦合的相对简单的对称双组分卡恩 - 希利厄德模型的情形,我们推导了具有实系数的非线性非局部振幅方程,并表明其分岔图和时间演化与全模型的结果非常吻合。通过解析得到了振幅方程的解及其稳定性,从而表明在这种振荡相分离中,粗化抑制是普遍存在的。其次,我们解除这两个限制并在一般情形下得到振幅方程。它具有复系数,并且对于一些收敛到行波状态的瞬态动力学情况,也与全模型表现出非常好的一致性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验