Zhu Chen, Zhang Lizhi, Yang Yabing, Wang Ben, Luo Junrong, Tao Ran, Ding Jianning, Xu Lin
School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China.
ACS Appl Mater Interfaces. 2024 Dec 18;16(50):69858-69869. doi: 10.1021/acsami.4c14718. Epub 2024 Dec 5.
Caterpillars possess a combination of structural flexibility and the ability to transition between peristaltic crawling and elastic jumping for swift movement, presenting an opportunity for the development and examination of versatile and highly environmentally adaptable bionic robots. Here, we report a photothermally responsive untethered caterpillar-inspired Janus-type soft robot, featuring a driver layer composed of Ag nanowires (AgNWs) with a photothermal effect enhanced by localized surface plasmon resonance incorporated into a liquid crystal elastomer (LCE). By integration of this LCE active layer with a polyimide passive layer, the strain mismatch and bending moment of the robot are enhanced, enabling rapid, substantial, and reversible deformations. The interlayer mismatch assembly strategy and the central symmetry of the Janus structure enable the Janus-type soft robot to perform various locomotion maneuvers, including continuous crawling at a rate of 1.5 BL/min, tumbling at a speed of 1.875 BL/min, and instantaneous jumping at a speed of 351 BL/min. The robot demonstrates adaptive locomotion capabilities in challenging environments with diverse frictions and obstacles, such as slopes, stones, gravel, and grass. This showcases the potential of this approach for customized path planning and autonomous reconnaissance expeditions in complex settings. Furthermore, a three-dimensional AgNW network resembling a spiderweb was fabricated using modulated electrospinning technology, achieving a high photothermal conversion efficiency of 36.42% at a very low surface noble metal ion content (0.035 mg/cm).
毛毛虫具备结构灵活性以及在蠕动爬行和弹性跳跃之间转换以实现快速移动的能力,这为开发和研究多功能且高度适应环境的仿生机器人提供了契机。在此,我们报道了一种受毛毛虫启发的光热响应型无系绳Janus型软体机器人,其驱动层由银纳米线(AgNWs)组成,通过局部表面等离子体共振增强光热效应,并集成到液晶弹性体(LCE)中。通过将该LCE活性层与聚酰亚胺被动层相结合,增强了机器人的应变失配和弯矩,实现了快速、大幅且可逆的变形。层间失配组装策略和Janus结构的中心对称性使Janus型软体机器人能够执行各种运动动作,包括以1.5体长/分钟的速度连续爬行、以1.875体长/分钟的速度翻滚以及以351体长/分钟的速度瞬间跳跃。该机器人在具有不同摩擦力和障碍物的挑战性环境中,如斜坡、石头、砾石和草地,展示了自适应运动能力。这展示了这种方法在复杂环境中进行定制路径规划和自主侦察探险的潜力。此外,利用调制电纺丝技术制造了一种类似蜘蛛网的三维AgNW网络,在非常低的表面贵金属离子含量(0.035毫克/平方厘米)下实现了36.42%的高光热转换效率。