Suppr超能文献

异化硫酸盐还原菌电活性呼吸过程中直接和间接细胞外电子转移机制的共存。

Co-occurrence of direct and indirect extracellular electron transfer mechanisms during electroactive respiration in a dissimilatory sulfate reducing bacterium.

作者信息

Hou Liyuan, Cortez Rebecca, Hagerman Michael, Hu Zhiqiang, Majumder Erica L-W

机构信息

Department of Civil and Environmental Engineering, Utah State University, Logan, Utah, USA.

Utah Water Research Laboratory, Logan, Utah, USA.

出版信息

Microbiol Spectr. 2025 Jan 7;13(1):e0122624. doi: 10.1128/spectrum.01226-24. Epub 2024 Dec 5.

Abstract

Understanding the extracellular electron transfer mechanisms of electroactive bacteria could help determine their potential in microbial fuel cells (MFCs) and their microbial syntrophy with redox-active minerals in natural environments. However, the mechanisms of extracellular electron transfer to electrodes by sulfate-reducing bacteria (SRB) remain underexplored. Here, we utilized double-chamber MFCs with carbon cloth electrodes to investigate the extracellular electron transfer mechanisms of Hildenborough (H), a model SRB, under varying lactate and sulfate concentrations using different H mutants. Our MFC setup indicated that H can harvest electrons from lactate at the anode and transfer them to cathode, where H could further utilize these electrons. Patterns in current production compared with variations of electron donor/acceptor ratios in the anode and cathode suggested that attachment of H to the electrode and biofilm density were critical for effective electricity generation. Electron microscopy analysis of H biofilms indicated H utilized filaments that resemble pili to attach to electrodes and facilitate extracellular electron transfer from cell to cell and to the electrode. Proteomics profiling indicated that H adapted to electroactive respiration by presenting more pili- and flagellar-related proteins. The mutant with a deletion of the major pilus-producing gene yielded less voltage and far less attachment to both anodic and catholic electrodes, suggesting the importance of pili in extracellular electron transfer. The mutant with a deficiency in biofilm formation, however, did not eliminate current production indicating the existence of indirect extracellular electron transfer. Untargeted metabolomics profiling showed flavin-based metabolites, potential electron shuttles.IMPORTANCEWe explored the application of Hildenborough in microbial fuel cells (MFCs) and investigated its potential extracellular electron transfer (EET) mechanism. We also conducted untargeted proteomics and metabolomics profiling, offering insights into how DvH adapts metabolically to different electron donors and acceptors. An understanding of the EET mechanism and metabolic flexibility of H holds promise for future uses including bioremediation or enhancing efficacy in MFCs for wastewater treatment applications.

摘要

了解电活性细菌的细胞外电子转移机制有助于确定它们在微生物燃料电池(MFC)中的潜力,以及它们在自然环境中与氧化还原活性矿物质的微生物共生关系。然而,硫酸盐还原菌(SRB)向电极进行细胞外电子转移的机制仍未得到充分研究。在这里,我们利用带有碳布电极的双室MFC,使用不同的H突变体,在不同的乳酸盐和硫酸盐浓度下,研究了典型SRB菌株希登伯勒菌(H)的细胞外电子转移机制。我们的MFC装置表明,H可以在阳极从乳酸盐中获取电子并将其转移到阴极,在阴极H可以进一步利用这些电子。与阳极和阴极中电子供体/受体比率变化相比的电流产生模式表明,H附着在电极上以及生物膜密度对于有效发电至关重要。对H生物膜的电子显微镜分析表明,H利用类似于菌毛的细丝附着在电极上,并促进细胞间以及细胞与电极之间的细胞外电子转移。蛋白质组学分析表明,H通过呈现更多与菌毛和鞭毛相关的蛋白质来适应电活性呼吸。缺失主要菌毛产生基因的突变体产生的电压更低,并且对阳极和阴极电极的附着也少得多,这表明菌毛在细胞外电子转移中的重要性。然而,生物膜形成缺陷的突变体并没有消除电流产生,这表明存在间接细胞外电子转移。非靶向代谢组学分析显示了基于黄素的代谢物,即潜在的电子穿梭体。

重要性

我们探索了希登伯勒菌在微生物燃料电池(MFC)中的应用,并研究了其潜在的细胞外电子转移(EET)机制。我们还进行了非靶向蛋白质组学和代谢组学分析,深入了解了希登伯勒菌如何在代谢上适应不同的电子供体和受体。对希登伯勒菌EET机制和代谢灵活性的理解为其未来的用途带来了希望,包括生物修复或提高MFC在废水处理应用中的效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b3b/11705803/319ea5d1e35d/spectrum.01226-24.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验