Chen Dongyang, Zhou Li, Wang Weigang, Lian Chaofan, Liu Hefan, Luo Lan, Xiao Kuang, Chen Yong, Song Danlin, Tan Qinwen, Ge Maofa, Yang Fumo
College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China.
Environ Sci Technol. 2024 Dec 17;58(50):22267-22277. doi: 10.1021/acs.est.4c06486. Epub 2024 Dec 5.
Nitrous acid (HONO) serves as the primary source of OH radicals in the atmosphere, exerting significant impacts on atmospheric secondary pollution. The heterogeneous reactions of NO on surfaces and photolysis of particulate nitrate or adsorbed nitric acid are important sources of atmospheric HONO, yet the corresponding kinetic parameters based on laboratory investigations and field observations exhibit considerable variations. In this study, we developed an explainable machine learning model to analyze the HONO budget using two years of summer urban supersite observations. By integrating chemical mechanisms and feature engineering into our machine learning model, we assessed the contributions of different sources to HONO and inferred the kinetic parameters for the primary HONO formation pathways, thereby partially addressing the limitations associated with predetermined rate coefficients. Our findings revealed that the primary source of daytime HONO in the summer was the photolysis of nitric acid adsorbed on both aerosol and ground surfaces, accounting for over 40% of its unknown sources. This was followed by the photoenhanced heterogeneous conversion of NO and the photolysis of particulate nitrate. Additionally, we derived the corresponding kinetic parameters, analyzed their influencing factors, and confirmed that machine learning methods hold great potential for the study of the HONO budget.
亚硝酸(HONO)是大气中羟基自由基的主要来源,对大气二次污染有重大影响。NO在表面的非均相反应以及颗粒硝酸盐或吸附硝酸的光解是大气中HONO的重要来源,但基于实验室研究和现场观测的相应动力学参数存在相当大的差异。在本研究中,我们开发了一个可解释的机器学习模型,利用两年的夏季城市超站点观测数据来分析HONO收支。通过将化学机制和特征工程整合到我们的机器学习模型中,我们评估了不同来源对HONO的贡献,并推断了主要HONO形成途径的动力学参数,从而部分解决了与预定速率系数相关的局限性。我们的研究结果表明,夏季白天HONO的主要来源是吸附在气溶胶和地面表面的硝酸的光解,占其未知来源的40%以上。其次是NO的光增强非均相转化和颗粒硝酸盐的光解。此外,我们推导了相应的动力学参数,分析了其影响因素,并证实机器学习方法在HONO收支研究中具有巨大潜力。