Ferreira-Sá Lana C E, Machado Eleuza R, Gurgel-Gonçalves Rodrigo, Abad-Franch Fernando
Programa de Pós-Graduação em Medicina Tropical, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.
Laboratório de Parasitologia Médica e Biologia de Vetores, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.
PLoS Negl Trop Dis. 2024 Dec 5;18(12):e0012719. doi: 10.1371/journal.pntd.0012719. eCollection 2024 Dec.
Gut-parasite transmission often involves faecal shedding, and detecting parasites in stool samples remains the cornerstone of diagnosis. However, not all samples drawn from infected hosts contain parasites (because of intermittent shedding), and no test can detect the target parasites in 100% of parasite-bearing samples (because of imperfect sensitivity). Disentangling the effects of intermittent shedding and imperfect sensitivity on pathogen detection would help us better understand transmission dynamics, disease epidemiology, and diagnostic-test performance. Using paediatric Giardia infections as a case-study, here we illustrate a hierarchical-modelling approach to separately estimating the probabilities of host-level infection ([Formula: see text]); stool-sample-level shedding, given infection ([Formula: see text]); and test-level detection, given infection and shedding ([Formula: see text]).
METHODS/FINDINGS: We collected 1-3 stool samples, in consecutive weeks, from 276 children. Samples (413 overall) were independently examined, via standard sedimentation/optical microscopy, by a senior parasitologist and a junior, trained student (826 tests overall). Using replicate test results and multilevel hierarchical models, we estimated per-sample Giardia shedding probability at [Formula: see text] and observer-specific test sensitivities at [Formula: see text] and [Formula: see text]. Gender-specific infection-frequency estimates were [Formula: see text] and [Formula: see text]. Had we used a (hypothetical) Perfect Test with 100% narrow-sense sensitivity ([Formula: see text]), the average probability of detecting Giardia in a sample drawn from an infected child ([Formula: see text]) would have been [Formula: see text]. Because no test can be >100% sensitive, [Formula: see text] (which measures clinical sensitivity) can only be brought above ~ 0.44 by tinkering with the availability of Giardia in stool samples (i.e., [Formula: see text]); for example, drawing-and-pooling 3 replicate samples would yield [Formula: see text].
By allowing separate estimation (and modelling) of pathogen-shedding probabilities, the approach we illustrate provides a means to study pathogen transmission cycles and dynamics in unprecedented detail. Separate estimation (and modelling) of true test sensitivity, moreover, may cast new light on the performance of diagnostic tests and procedures, whether novel or routine-practice.
肠道寄生虫传播通常涉及粪便排虫,而在粪便样本中检测寄生虫仍然是诊断的基石。然而,并非所有从受感染宿主采集的样本都含有寄生虫(由于间歇性排虫),而且没有一种检测方法能在100%的含寄生虫样本中检测到目标寄生虫(由于灵敏度不完善)。厘清间歇性排虫和灵敏度不完善对病原体检测的影响,将有助于我们更好地理解传播动态、疾病流行病学和诊断检测性能。以儿童贾第虫感染为例,我们在此阐述一种分层建模方法,以分别估计宿主层面感染的概率([公式:见原文]);感染情况下粪便样本层面的排虫概率([公式:见原文]);以及感染且排虫情况下检测层面的检测概率([公式:见原文])。
方法/结果:我们连续数周从276名儿童中采集了1至3份粪便样本。总共413份样本由一位资深寄生虫学家和一名经过培训的初级学生通过标准沉淀/光学显微镜独立检查(总共826次检测)。利用重复检测结果和多级分层模型,我们估计每份样本贾第虫排虫概率为[公式:见原文],以及观察者特异性检测灵敏度分别为[公式:见原文]和[公式:见原文]。按性别估计的感染频率分别为[公式:见原文]和[公式:见原文]。如果我们使用一种(假设的)狭义灵敏度为100%的“完美检测”([公式:见原文]),那么从受感染儿童采集的样本中检测到贾第虫的平均概率([公式:见原文])将为[公式:见原文]。由于没有检测方法的灵敏度能超过100%,[公式:见原文](衡量临床灵敏度)只能通过调整粪便样本中贾第虫的可得性(即[公式:见原文])提高到约0.44以上;例如,采集并合并3份重复样本将得到[公式:见原文]。
通过允许分别估计(并建模)病原体排虫概率,我们所阐述的方法提供了一种手段,以前所未有的详细程度研究病原体传播周期和动态。此外,分别估计(并建模)真实检测灵敏度,可能会为诊断检测和程序(无论是新型的还是常规实践中的)的性能带来新的认识。