Zhang Wendi, Yang Xiao-Jiao, Kirillov Alexander M, Yang Lizi, Fang Ran
State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
MINDlab: Molecular Design & Innovation Laboratory, Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal.
J Org Chem. 2024 Dec 20;89(24):18209-18217. doi: 10.1021/acs.joc.4c02087. Epub 2024 Dec 5.
A comprehensive theoretical investigation into the gold-catalyzed synthesis of polysubstituted pyrazolines and dihydropyridines from imines and methyl phenylpropiolate was conducted in this study. Three imines with distinct substituents were selected as model reactants. The computational outcomes reveal that four-membered intermediates generated from aza-enyne metathesis significantly affect the reaction selectivity. For nitrogen-centered NHCOMe substituents (series ), an outward ring opening occurs during the metathesis of the aza-alkyne. This leads to the formation of -butadiene intermediates and ultimately to pyrazoline products. Conversely, with an aromatic substituent at the nitrogen site (series and ), an inward ring opening takes place. This results in -butadiene intermediates and the synthesis of dihydropyridine derivatives. The dihydropyridine product's configuration is determined by the aromatic ring's substituent. Electron-donating groups tend to directly form 1,4-dihydropyridine through a 6π electrocyclization (series ). In contrast, strong electron-withdrawing substituents initially undergo azayne metathesis, followed by 6π electrocyclization to produce 1,2-dihydropyridine products (series ). Furthermore, the distinctive selectivities were investigated in depth using global reactivity index and distortion/interaction methods. This research may contribute to the design of more effective and selective protocols to access pyrazolines, dihydropyridines, and related compounds.
本研究对金催化亚胺与苯丙炔酸甲酯合成多取代吡唑啉和二氢吡啶进行了全面的理论研究。选择了三种具有不同取代基的亚胺作为模型反应物。计算结果表明,氮杂烯炔复分解产生的四元中间体对反应选择性有显著影响。对于以氮为中心的NHCOMe取代基(系列 ),氮杂炔烃复分解过程中发生向外开环。这导致形成 -丁二烯中间体并最终生成吡唑啉产物。相反,在氮位点有芳基取代基时(系列 和 ),发生向内开环。这产生 -丁二烯中间体并合成二氢吡啶衍生物。二氢吡啶产物的构型由芳环的取代基决定。供电子基团倾向于通过6π电环化直接形成1,4-二氢吡啶(系列 )。相比之下,强吸电子取代基首先进行氮杂烯炔复分解,然后通过6π电环化生成1,2-二氢吡啶产物(系列 )。此外,使用全局反应性指数和畸变/相互作用方法深入研究了独特的选择性。该研究可能有助于设计更有效和选择性的方案来合成吡唑啉、二氢吡啶及相关化合物。