Suppr超能文献

脓毒症诱导的心肌病中与胆碱代谢相关的特征性生物标志物的鉴定与验证

IDENTIFICATION AND VERIFICATION OF FEATURE BIOMARKERS ASSOCIATED WITH CHOLINE METABOLISM IN SEPSIS-INDUCED CARDIOMYOPATHY.

作者信息

Pei Meng-Qin, Sun Zhen-Dong, Yang Yu-Shen, Fang Yu-Ming, Zeng Ya-Fen, He He-Fan

机构信息

Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.

出版信息

Shock. 2025 Mar 1;63(3):456-465. doi: 10.1097/SHK.0000000000002513. Epub 2024 Dec 3.

Abstract

Background: Sepsis-induced cardiomyopathy ( SIC ), one of the most common complications of sepsis, seriously affects the prognosis of critically ill patients. Choline metabolism is an important biological process in the organism, and the mechanism of its interaction with SIC is unclear. The aim of this study was to reveal the choline metabolism genes (CMGs) associated with SIC and to provide effective targets for the treatment of SIC . Methods: Through a comprehensive analysis of the microarray dataset GSE79962 (comprising 20 SIC patients and 11 healthy controls) from the GEO database, suspected co-expression modules and differentially expressed genes (DEGs) in SIC were identified. Hub CMGs were obtained by intersecting choline metabolism database with DEGs and key model genes. Afterward, hub CMGs most significantly involved in prognosis were further analyzed for the verification of major pathways of enrichment analysis. Finally, the expression of hub CMGs in in vivo and in vitro SIC model was verified by immunohistochemistry staining and quantitative real-time polymerase chain reaction analysis (qPCR). Results: Weighted gene co-expression network analysis identified 1 hub gene panel and 3,867 hub genes, which were intersected with DEGs and CMGs to obtain the same 3 hub CMGs:HIF-1α, DGKD, and PIK3R1. Only HIF-1α shows significant association with mortality ( P = 0.009). Subsequent differential analysis based on the high and low HIF-1α expression yielded 63 DEGs and then they were uploaded into Cytoscape software to construct a protein-protein interaction network and 6 hub genes with the highest priority were obtained (CISH, THBS1, IMP1, MYC, SOCS3, and VCAN). Finally, a multifactorial COX analysis revealed a significant correlation between HIF-1α and survival in SIC patients, which was further validated by in vitro and in vivo experiments. Conclusion: Our findings will provide new insights into the pathogenesis of SIC , and HIF-1α may have important applications as a potential biomarker for early detection and therapeutic intervention in SIC .

摘要

背景

脓毒症诱导的心肌病(SIC)是脓毒症最常见的并发症之一,严重影响重症患者的预后。胆碱代谢是机体重要的生物学过程,其与SIC相互作用的机制尚不清楚。本研究旨在揭示与SIC相关的胆碱代谢基因(CMGs),并为SIC的治疗提供有效靶点。方法:通过对来自基因表达综合数据库(GEO)的微阵列数据集GSE79962(包括20例SIC患者和11例健康对照)进行综合分析,确定SIC中可疑的共表达模块和差异表达基因(DEGs)。通过将胆碱代谢数据库与DEGs及关键模型基因进行交叉,获得核心CMGs。随后,对最显著参与预后的核心CMGs进行进一步分析,以验证富集分析的主要途径。最后,通过免疫组织化学染色和定量实时聚合酶链反应分析(qPCR)验证核心CMGs在体内和体外SIC模型中的表达。结果:加权基因共表达网络分析确定了1个核心基因面板和3867个核心基因,将其与DEGs和CMGs交叉,得到相同的3个核心CMGs:缺氧诱导因子-1α(HIF-1α)、二酰甘油激酶δ(DGKD)和磷脂酰肌醇-3激酶调节亚基1(PIK3R1)。只有HIF-1α与死亡率显著相关(P = 0.009)。随后基于HIF-1α高表达和低表达进行差异分析,得到63个DEGs,然后将它们上传到Cytoscape软件中构建蛋白质-蛋白质相互作用网络,获得6个优先级最高的核心基因(细胞因子信号抑制因子1(CISH)、血小板反应蛋白1(THBS1)、胰岛素样生长因子Ⅱ信使核糖核酸结合蛋白1(IMP1)、原癌基因c-Myc(MYC)、细胞因子信号抑制因子3(SOCS3)和多功能蛋白聚糖(VCAN))。最后,多因素COX分析显示HIF-1α与SIC患者的生存率显著相关,这在体外和体内实验中得到进一步验证。结论:我们的研究结果将为SIC的发病机制提供新的见解,HIF-1α作为SIC早期检测和治疗干预的潜在生物标志物可能具有重要应用价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验