Suppr超能文献

体心立方、类螺旋面、菱形和Voronoi功能梯度增材制造生物医学晶格结构的力学行为与失效模式。

Mechanical behavior and failure mode of body-centered cubic, gyroid, diamond, and Voronoi functionally graded additively manufactured biomedical lattice structures.

作者信息

Cheloni João Pedro M, Zluhan Bruno, Silveira Marcio E, Fonseca Eduardo B, Valim Diego B, Lopes Eder S N

机构信息

Industrial Products Development, SENAI CIMATEC University Center, Salvador, BA, Brazil; School of Mechanical Engineering, University of Campinas - UNICAMP, Campinas, SP, Brazil.

School of Mechanical Engineering, University of Campinas - UNICAMP, Campinas, SP, Brazil; South Eastern Applied Materials Research Center- SEAM, South East Technological University, Waterford, Ireland.

出版信息

J Mech Behav Biomed Mater. 2025 Mar;163:106796. doi: 10.1016/j.jmbbm.2024.106796. Epub 2024 Nov 4.

Abstract

Given the capability to produce parts with complex geometries, powder bed fusion using a laser beam (PBF-LB), one of several additive manufacturing techniques, is becoming increasingly prevalent in both research and industry. Advances in the development of biomedical lattice structures show a trend in the use of functional gradients for greater customization and adjustment of mechanical properties according to the demands. This study analyzed four biomedical potential lattice structures (regular and graded) manufactured using PBF-LB in Ti6Al4V alloy. X-ray computed microtomography results demonstrated high accuracy for thin walls (0.6 mm), with negligible discrepancies. The diamond structure exhibited the highest mechanical resistance (∼130 MPa) and energy absorption (∼200 J) and showed a reduced effect of the gradient on the mechanical properties. The body-centered cubic (BCC) structure had the lowest resistance and absorption (∼6 MPa), but the use of graded structures improved energy absorption (∼30 J). Two primary failure modes were identified: shear fracture at 45° and crushing. Triply periodic minimal surface (TPMS) structures showed initial crushing before shearing. Graded structures experienced failures in the upper region due to lower density, causing stress and strain increases. Numerical simulations revealed stress distribution, with TPMS structures displaying better distribution and BCC/Voronoi structures having stress concentrators, contributing to lower collapse loads. Cross-sectional views indicated a tendency for 45° failure in regular structures and progressive collapse in graded structures.

摘要

鉴于能够制造具有复杂几何形状的零件,作为几种增材制造技术之一的激光束粉末床熔融(PBF-LB)在研究和工业领域正变得越来越普遍。生物医学晶格结构的发展进展显示出一种趋势,即使用功能梯度来根据需求进行更大程度的定制和机械性能调整。本研究分析了使用PBF-LB在Ti6Al4V合金中制造的四种生物医学潜在晶格结构(规则和梯度结构)。X射线计算机断层扫描结果表明薄壁(0.6毫米)具有高精度,差异可忽略不计。菱形结构表现出最高的机械抗性(约130兆帕)和能量吸收(约200焦),并且梯度对机械性能的影响较小。体心立方(BCC)结构的抗性和吸收最低(约6兆帕),但使用梯度结构提高了能量吸收(约30焦)。确定了两种主要失效模式:45°剪切断裂和挤压。三重周期极小曲面(TPMS)结构在剪切之前表现出初始挤压。梯度结构由于密度较低在上部区域发生失效,导致应力和应变增加。数值模拟揭示了应力分布,TPMS结构显示出更好的分布,而BCC/沃罗诺伊结构具有应力集中器,导致较低的坍塌载荷。横截面视图表明规则结构有45°失效的趋势,梯度结构有渐进坍塌的趋势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验