Suppr超能文献

Transcranial magneto-acoustic stimulation enhances motor function and modulates cortical excitability of motor cortex in a Parkinson's disease mouse model.

作者信息

Zhang Shuai, Wang Qingzhao, Xu Yihao, Zhang Haochen, Mi Jinrui, Lu Xiaochao, Fan Ruiyang, Lv Jiangwei, Xu Guizhi

机构信息

School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China; State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, Hebei University of Technology, Tianjin 300130, China.

School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China; State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, Hebei University of Technology, Tianjin 300130, China.

出版信息

Behav Brain Res. 2025 Mar 5;480:115364. doi: 10.1016/j.bbr.2024.115364. Epub 2024 Dec 3.

Abstract

Parkinson's disease (PD) is a neurodegenerative disorder characterized primarily by motor dysfunction. Transcranial magneto-acoustic stimulation (TMAS), an emerging non-invasive brain neuromodulation technology, is increasingly being applied in the treatment of brain diseases. However, the effects of TMAS on PD are unknown, which is not well studied. Here, we utilized TMAS on PD model mice induced by MPTP to investigate the underlying mechanism of therapy. Our study found that TMAS improved the behavioral performance of PD model mice, enhancing the motor function and motivation for movement. Besides, it inhibited the increased beta oscillations in the motor cortex, while also reducing gamma oscillations. Moreover, the abnormally exaggerated beta-broad gamma phase amplitude coupling (PAC) was decreased after TMAS, and there was a significant negative correlation between PAC and both distance traveled and mean speed during the open filed test. Additionally, the ongoing stimulation could provide neuroprotection, implying that TMAS could ameliorate the loss of dopaminergic neurons, with no damage observed in the brain tissue of mice. Our findings suggest that TMAS could provide a non-invasive tool for the treatment of Parkinson's disease and beta-broad gamma phase amplitude coupling could be employed as a biomarker for PD.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验