Suppr超能文献

Transcranial magneto-acoustic stimulation enhances motor function and modulates cortical excitability of motor cortex in a Parkinson's disease mouse model.

作者信息

Zhang Shuai, Wang Qingzhao, Xu Yihao, Zhang Haochen, Mi Jinrui, Lu Xiaochao, Fan Ruiyang, Lv Jiangwei, Xu Guizhi

机构信息

School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China; State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, Hebei University of Technology, Tianjin 300130, China.

School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China; State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, Hebei University of Technology, Tianjin 300130, China.

出版信息

Behav Brain Res. 2025 Mar 5;480:115364. doi: 10.1016/j.bbr.2024.115364. Epub 2024 Dec 3.

Abstract

Parkinson's disease (PD) is a neurodegenerative disorder characterized primarily by motor dysfunction. Transcranial magneto-acoustic stimulation (TMAS), an emerging non-invasive brain neuromodulation technology, is increasingly being applied in the treatment of brain diseases. However, the effects of TMAS on PD are unknown, which is not well studied. Here, we utilized TMAS on PD model mice induced by MPTP to investigate the underlying mechanism of therapy. Our study found that TMAS improved the behavioral performance of PD model mice, enhancing the motor function and motivation for movement. Besides, it inhibited the increased beta oscillations in the motor cortex, while also reducing gamma oscillations. Moreover, the abnormally exaggerated beta-broad gamma phase amplitude coupling (PAC) was decreased after TMAS, and there was a significant negative correlation between PAC and both distance traveled and mean speed during the open filed test. Additionally, the ongoing stimulation could provide neuroprotection, implying that TMAS could ameliorate the loss of dopaminergic neurons, with no damage observed in the brain tissue of mice. Our findings suggest that TMAS could provide a non-invasive tool for the treatment of Parkinson's disease and beta-broad gamma phase amplitude coupling could be employed as a biomarker for PD.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验