Suppr超能文献

开发一种PMGDNI模型以预测血管内治疗后急性缺血性卒中三个月不良结局的概率:一项队列研究。

Development of a PMGDNI model to predict the probability of three-month unfavorable outcome acute ischemic stroke after endovascular treatment: a cohort study.

作者信息

Yang Chao, Wang Jingying, Zhang Ruihai, Lu Yiyao, Hu Wei, Yang Peng, Jiang Yiqing, Hong Weijun, Shan Renfei, Xu Yinghe, Jiang Yongpo

机构信息

Department of Emergency Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China.

Department of Neurology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China.

出版信息

BMC Neurol. 2024 Dec 5;24(1):472. doi: 10.1186/s12883-024-03960-1.

Abstract

BACKGROUND

Patients with acute large vessel occlusion stroke (ALVOS) may exhibit considerable variability in clinical outcomes following mechanical thrombectomy (MT). This study aimed to develop a novel statistical model predicting functional independence three months post-endovascular treatment for acute stroke and validate its performance within the cohort.

METHOD

Consecutive patients undergoing endovascular treatment for acute stroke with large vessel occlusion were randomly divided into a modeling group and a validation group in a 7:3 ratio. Independent risk factors were identified through LASSO regression and multivariate logistic regression analyses, leading to the development of a prognostic model whose performance was rigorously validated.

RESULTS

A total of 913 patients were screened, with 893 cases included. The modeling group comprised 625 cases, and the validation group included 268 cases. Identified independent factors for adverse outcomes after endovascular treatment of acute ischemic stroke (AIS) were pneumonia (OR = 4.517, 95% CI = 2.916-7.101, P < 0.001), mechanical ventilation (OR = 2.449, 95% CI = 1.475-5.148, P = 0.001), admission GCS ≥ 8 (OR = 0.365, 95% CI = 0.167-0.745, P = 0.008), dysphagia (OR = 2.074, 95% CI = 1.375-3.126, P < 0.001), and 72-hour highest Na ≥ 145 (OR = 2.794, 95% CI = 1.508-5.439, P = 0.002), along with intracranial hemorrhage (OR = 2.453, 95% CI = 1.408-4.396, P = 0.002). These factors were illustrated in a PMGDNI column chart. The area under the ROC curve for the modeling group was 82.5% (95% CI = 0.793-0.857), and for the validation group, it was 83.7% (95% CI = 0.789-0.885). The Hosmer-Lemeshow test indicates that there is no statistically significant difference (P > 0.05) between the predicted and actual probabilities of adverse outcomes. The clinical decision curve demonstrated optimal net benefits at thresholds of 0.30-1.00 and 0.25-1.00 for both training and validation sets, indicating effective clinical efficacy within these probability ranges.

CONCLUSION

We have successfully developed a new predictive model enhancing the accuracy of prognostic assessments for acute ischemic stroke following EVT. It provides an individual, visual, and precise prediction of the risk probability of a 90-day unfavorable outcome.

摘要

背景

急性大血管闭塞性卒中(ALVOS)患者在接受机械取栓术(MT)后的临床结局可能存在很大差异。本研究旨在建立一种新的统计模型,预测急性卒中血管内治疗后三个月的功能独立性,并在队列中验证其性能。

方法

将连续接受急性大血管闭塞性卒中血管内治疗的患者按7:3的比例随机分为建模组和验证组。通过LASSO回归和多变量逻辑回归分析确定独立危险因素,从而建立一个预后模型,并对其性能进行严格验证。

结果

共筛选出913例患者,纳入893例。建模组625例,验证组268例。确定的急性缺血性卒中(AIS)血管内治疗后不良结局的独立因素为肺炎(OR = 4.517,95%CI = 2.916 - 7.101,P < 0.001)、机械通气(OR = 2.449,95%CI = 1.475 - 5.148,P = 0.001)、入院时格拉斯哥昏迷量表(GCS)≥8分(OR = 0.365,95%CI = 0.167 - 0.745,P = 0.008)、吞咽困难(OR = 2.074,95%CI = 1.375 - 3.126,P < 0.001)、72小时最高血钠≥145(OR = 2.794,95%CI = 1.508 - 5.439,P = 0.002),以及颅内出血(OR = 2.453,95%CI = 1.408 - 4.396,P = 0.002)。这些因素在PMGDNI柱状图中显示。建模组的ROC曲线下面积为82.5%(95%CI = 0.793 - 0.857),验证组为83.7%(95%CI = 0.789 - 0.885)。Hosmer-Lemeshow检验表明,不良结局的预测概率与实际概率之间无统计学显著差异(P > 0.05)。临床决策曲线显示,训练集和验证集在阈值为0.30 - 1.00和0.25 - 1.00时具有最佳净效益,表明在这些概率范围内临床疗效显著。

结论

我们成功建立了一种新的预测模型,提高了血管内治疗后急性缺血性卒中预后评估的准确性。它提供了对90天不良结局风险概率的个体化、可视化和精确预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f50/11619606/1859a4b13877/12883_2024_3960_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验