Suppr超能文献

Evaluation of the Neuroprotective Effects of Idebenone in an Experimental Carbon Monoxide Poisoning Model.

作者信息

Karakus Hulya, Bulbul Ozlem, Kulaber Ali, Yaman Huseyin, Pasli Sinan, Imamoglu Melih, Karaca Yunus, Yenilmez Engin, Ozer Vildan

机构信息

Department of Emergency Medicine, School of Medicine, Karadeniz Technical University, Trabzon, Turkey.

Department of Histology and Embryology, School of Medicine, Karadeniz Technical University, Trabzon, Turkey.

出版信息

J Appl Toxicol. 2025 Apr;45(4):659-668. doi: 10.1002/jat.4742. Epub 2024 Dec 5.

Abstract

Carbon monoxide (CO) poisoning is among the main causes of poisoning-related mortality and morbidity, primarily affecting the central nervous system and leading to delayed neurological sequelae. Idebenone exerts antioxidant and neuroprotective effects. In this study, we aimed to evaluate the specific neuroprotective effects of idebenone against CO poisoning. Forty female Wistar Albino rats were used in this study. Except the controls, the other rats inhaled 5000 ppm CO until a change in consciousness was observed. Rats with carboxyhemoglobin concentrations over 20% in blood samples collected from the tail vein were considered successful acute CO poisoning models. The rats were divided into five groups: healthy control (HC; group 1), CO + saline (CO-S; group 2), CO + 100 mg/kg idebenone (CO-I; group 3), CO + 200 mg/kg idebenone (CO-I; group 4), and CO + 300 mg/kg idebenone (CO-I; group 5). Pre-determined doses of idebenon were orally administered to the rats at 24-h intervals for 5 days. The rats were anesthetized and sacrificed 24 h after the last drug dose. Histopathological and biochemical parameters were examined in the blood and hippocampus samples of the rats. Histopathological grading of neurons in the hippocampus revealed that the CO-S group exhibited the highest number of grade 1, 2, and 3 degenerative cells (all p = 0.001). Apoptotic index was the highest in the CO-S group and significantly low in the idebenone-treated groups (p = 0.001). Neuron-specific enolase and malondialdehyde levels and oxidative stress index were significantly lower in both the hippocampus and serum samples of the idebenone-treated groups than in those of the CO-S group (all p values = 0.001). Overall, idebenone inhibited degeneration due to CO-induced brain damage and exerted neuroprotective effects against oxidative stress in rats.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验