Suppr超能文献

使用SymPy(符号运算的Python)来理解结构方程模型。

Using SymPy (Symbolic Python) for understanding Structural Equation Modeling.

作者信息

Steele Joel S, Grimm Kevin J

机构信息

University of North Dakota.

Arizona State University.

出版信息

Struct Equ Modeling. 2024;31(6):1104-1115. doi: 10.1080/10705511.2024.2325122. Epub 2024 Mar 27.

Abstract

Structural Equation Modeling (SEM) continues to grow in popularity with numerous articles, books, courses, and workshops available to help researchers become proficient with SEM quickly. However, few resources are available to help users gain a deep understanding of the analytic steps involved in SEM, with even fewer providing reproducible syntax for those learning the technique. This work builds off of the original work by Ferron and Hess (2007) to provide computer syntax, written in python, for the specification, estimation, and numerical optimization steps necessary for SEM. The goal is to provide readers with many of the numerical and analytic details of SEM that may not be regularly taught in workshops and courses. This work extends the original demonstration by Ferron and Hess to incorporate the reticular action model notation for specification as well as the estimation of variable means. All of the code listed is provided in the appendix.

摘要

结构方程建模(SEM)的受欢迎程度持续上升,有大量的文章、书籍、课程和研讨会可帮助研究人员迅速熟练掌握SEM。然而,几乎没有资源可帮助用户深入理解SEM所涉及的分析步骤,为学习该技术的人提供可重现语法的资源则更少。这项工作以费伦和赫斯(2007年)的原始工作为基础,提供用Python编写的计算机语法,用于SEM所需的规范、估计和数值优化步骤。目标是为读者提供许多SEM的数值和分析细节,这些细节在研讨会和课程中可能不会经常讲授。这项工作扩展了费伦和赫斯的原始演示,纳入了用于规范的网状作用模型符号以及变量均值的估计。附录中提供了列出的所有代码。

相似文献

1
6
Lcapy: symbolic linear circuit analysis with Python.Lcapy:使用Python进行符号线性电路分析。
PeerJ Comput Sci. 2022 Feb 18;8:e875. doi: 10.7717/peerj-cs.875. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验