Suppr超能文献

一种通过雾计算中的三层计算智能方案来增强云存储中隐私保护的方法。

A method to enhance privacy preservation in cloud storage through a three-layer scheme for computational intelligence in fog computing.

作者信息

Ojha Sneha, Paygude Priyanka, Dhumane Amol, Rathi Snehal, Bidve Vijaykumar, Kumar Ajay, Devale Prakash

机构信息

Bharati Vidyapeeth (Deemed to be University), College of Engineering, Pune, India.

Symbiosis Institute of Technology, Symbiosis International University, Lavale, Pune, India.

出版信息

MethodsX. 2024 Nov 19;13:103053. doi: 10.1016/j.mex.2024.103053. eCollection 2024 Dec.

Abstract

Recent advancements in cloud computing have heightened concerns about data control and privacy due to vulnerabilities in traditional encryption methods, which may not withstand internal attacks from cloud servers. To overcome these issues about the data privacy and control of transfer on cloud, a novel three-tier storage model incorporating fog computing method has been proposed. This framework leverages the advantages of cloud storage while enhancing data privacy. The approach uses the Hash-Solomon code algorithm to partition data into distinct segments, distributing a portion of it across local machines and fog servers, in addition to cloud storage. This distribution not only increases data privacy but also optimises storage efficiency. Computational intelligence plays a crucial role by calculating the optimal data distribution across cloud, fog, and local servers, ensuring balanced and secure data storage.•Experimental analysis of this mathematical mode has demonstrated a significant improvement in storage efficiency, with increases ranging from 30 % to 40 % as the volume of data blocks grows.•This innovative framework based on Hash Solomon code method effectively addresses privacy concerns while maintaining the benefits of cloud computing, offering a robust solution for secure and efficient data management.

摘要

由于传统加密方法存在漏洞,可能无法抵御来自云服务器的内部攻击,云计算的最新进展引发了人们对数据控制和隐私的担忧。为了克服这些关于云数据隐私和传输控制的问题,提出了一种结合雾计算方法的新型三层存储模型。该框架在利用云存储优势的同时增强了数据隐私。该方法使用哈希 - 所罗门编码算法将数据划分为不同的段,除了云存储外,还将一部分数据分布到本地机器和雾服务器上。这种分布不仅增加了数据隐私,还优化了存储效率。计算智能通过计算跨云、雾和本地服务器的最佳数据分布发挥关键作用,确保数据存储的平衡和安全。• 对该数学模型的实验分析表明,随着数据块数量的增加,存储效率有显著提高,增幅在30%至40%之间。• 这种基于哈希 - 所罗门编码方法的创新框架在保持云计算优势的同时,有效解决了隐私问题,为安全高效的数据管理提供了强大的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fcc/11617985/f19d0171cfdc/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验