Suppr超能文献

面向基于云的医学影像分析的实用且隐私保护的卷积神经网络推理服务:一种基于同态加密的方法。

Towards practical and privacy-preserving CNN inference service for cloud-based medical imaging analysis: A homomorphic encryption-based approach.

作者信息

Bai Yanan, Zhao Hongbo, Shi Xiaoyu, Chen Lin

机构信息

School of Artificial Intelligence, Chongqing University of Technology, Chongqing, 401135, China.

Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.

出版信息

Comput Methods Programs Biomed. 2025 Apr;261:108599. doi: 10.1016/j.cmpb.2025.108599. Epub 2025 Jan 21.

Abstract

BACKGROUND AND OBJECTIVE

Cloud-based Deep Learning as a Service (DLaaS) has transformed biomedicine by enabling healthcare systems to harness the power of deep learning for biomedical data analysis. However, privacy concerns emerge when sensitive user data must be transmitted to untrusted cloud servers. Existing privacy-preserving solutions are hindered by significant latency issues, stemming from the computational complexity of inner product operations in convolutional layers and the high communication costs of evaluating nonlinear activation functions. These limitations make current solutions impractical for real-world applications.

METHODS

In this paper, we address the challenges in mobile cloud-based medical imaging analysis, where users aim to classify private body-related radiological images using a Convolutional Neural Network (CNN) model hosted on a cloud server while ensuring data privacy for both parties. We propose PPCNN, a practical and privacy-preserving framework for CNN Inference. It introduces a novel mixed protocol that combines a low-expansion homomorphic encryption scheme with the noise-based masking method. Our framework is designed based on three key ideas: (1) optimizing computation costs by shifting unnecessary and expensive homomorphic multiplication operations to the offline phase, (2) introducing a coefficient-aware packing method to enable efficient homomorphic operations during the linear layer of the CNN, and (3) employing data masking techniques for nonlinear operations of the CNN to reduce communication costs.

RESULTS

We implemented PPCNN and evaluated its performance on three real-world radiological image datasets. Experimental results show that PPCNN outperforms state-of-the-art methods in mobile cloud scenarios, achieving superior response times and lower usage costs.

CONCLUSIONS

This study introduces an efficient and privacy-preserving framework for cloud-based medical imaging analysis, marking a significant step towards practical, secure, and trustworthy AI-driven healthcare solutions.

摘要

背景与目的

基于云的深度学习即服务(DLaaS)通过使医疗保健系统能够利用深度学习的力量进行生物医学数据分析,已经改变了生物医学。然而,当敏感的用户数据必须传输到不可信的云服务器时,隐私问题就出现了。现有的隐私保护解决方案受到严重延迟问题的阻碍,这些延迟问题源于卷积层内积运算的计算复杂性以及评估非线性激活函数的高通信成本。这些限制使得当前的解决方案在实际应用中不切实际。

方法

在本文中,我们解决了基于移动云的医学成像分析中的挑战,在这种情况下,用户旨在使用托管在云服务器上的卷积神经网络(CNN)模型对与身体相关的私密放射图像进行分类,同时确保双方的数据隐私。我们提出了PPCNN,这是一种用于CNN推理的实用且隐私保护的框架。它引入了一种新颖的混合协议,该协议将低扩展同态加密方案与基于噪声的掩码方法相结合。我们的框架基于三个关键思想设计:(1)通过将不必要且昂贵的同态乘法运算转移到离线阶段来优化计算成本,(2)引入系数感知打包方法以在CNN的线性层期间实现高效的同态运算,以及(3)对CNN的非线性运算采用数据掩码技术以降低通信成本。

结果

我们实现了PPCNN并在三个真实世界的放射图像数据集上评估了其性能。实验结果表明,PPCNN在移动云场景中优于现有方法,实现了卓越的响应时间和更低的使用成本。

结论

本研究引入了一种用于基于云的医学成像分析的高效且隐私保护的框架,朝着实用、安全且值得信赖的人工智能驱动的医疗保健解决方案迈出了重要一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验