Chen Junhui, Tang Fei
Island Research Center, MNR, Fuzhou, Fujian, China.
Fujian Provincial Key Laboratory of Island Conservation and Development, Fuzhou, Fujian, China.
Heliyon. 2024 Oct 10;10(20):e39160. doi: 10.1016/j.heliyon.2024.e39160. eCollection 2024 Oct 30.
Rock mechanics is an indispensable discipline in diverse sectors, from resource retrieval to disaster mitigation. Diving deeper into this field, particularly into microscale rock mechanics, offers strategic insights and potential advancements for rock engineering practice. The objective of this research is to map the scientific production tied to microscale rock mechanics to date. In doing so, we perform a bibliometric analysis to look over and discuss the performance of the related literature. The conceptual fabric of microscale rock mechanics research, constituted by four central themes, was revealed and visualized through a text mining analysis. These areas include (1) modeling and simulation of fluid flow and transport within porous media, (2) characterizing fracture and failure in rocks, (3) understanding the deformation mechanism in response to geological processes, and (4) studying the mechanical properties of rocks subjected to extreme conditions. Lastly, an upcoming research agenda for microscale rock mechanics was proposed, centered on addressing three identified research gaps: (I) the integration of geological processes to characterize mineral properties, (II) the augmentation of fracture predictions achieved through multiscale modeling of rock heterogeneity, and (III) the exploitation of Artificial Intelligence technologies for anticipating complex fracturing scenarios. This comprehensive approach promises to enrich our understanding of rock mechanics and its applications.
岩石力学在从资源开采到减灾的各个领域都是一门不可或缺的学科。深入研究这一领域,尤其是微观尺度岩石力学,可为岩石工程实践提供战略见解和潜在进展。本研究的目的是梳理迄今为止与微观尺度岩石力学相关的科研成果。在此过程中,我们进行文献计量分析,以审视和讨论相关文献的表现。通过文本挖掘分析,揭示并可视化了由四个核心主题构成的微观尺度岩石力学研究的概念框架。这些领域包括:(1)多孔介质内流体流动与运移的建模与模拟;(2)岩石断裂与破坏特征描述;(3)理解地质过程引起的变形机制;(4)研究极端条件下岩石的力学性能。最后,提出了微观尺度岩石力学即将开展的研究议程,重点是解决三个已确定的研究空白:(I)整合地质过程以表征矿物特性;(II)通过岩石非均质性的多尺度建模增强裂缝预测;(III)利用人工智能技术预测复杂的压裂情况。这种综合方法有望丰富我们对岩石力学及其应用的理解。