Suppr超能文献

基于红细胞指数得出的模型在预测非贫血孕妇α地中海贫血特征方面的准确性。

Accuracy of the model derived from red blood cell indices in predicting α-thalassemia trait among non-anemic pregnant women.

作者信息

Thiamkaew Atiphoom, Charoenkwan Pimlak, Jatavan Phudit, Tongsong Theera

机构信息

Department of Obstetrics and Gynecology, Thailand.

Department of Pediatrics, Thailand.

出版信息

Heliyon. 2024 Oct 9;10(20):e39103. doi: 10.1016/j.heliyon.2024.e39103. eCollection 2024 Oct 30.

Abstract

BACKGROUND

The study aims to establish prediction model derived from red blood cell indices to improve the accuracy of α-thalassemia trait screening in non-anemic pregnant women.

METHOD

A diagnostic study as secondary analysis on the prospective database was conducted. The participants were pregnant women, undergoing α-thalassemia screening at first visit antenatal care using red blood cell indices with confirmation by PCR method. Diagnostic performance of each of red blood cell parameter and their combination derived from logistic regression analysis in predicting α-thalassemia trait were determined.

FINDINGS

The total 587 Thai pregnant women were included in the analysis, consisting of 136 cases of α-thalassemia trait and 451 normal controls. Diagnostic performance analysis revealed that, the mean corpuscular volume (MCV) provided a sensitivity of 98.5 % and a false positive rate of 20.2 %. While The mean corpuscular hemoglobin (MCH) provided a sensitivity of 99.3 % and a false positive rate of 15.7 %. The combined-parameters prediction model including hemoglobin (Hb), MCV, MCH, mean corpuscular hemoglobin concentration (MCHC), red cell distribution width (RDW), and red blood cell (RBC) count, demonstrated excellent diagnostic performance with an area under the curve (AUC) of 0.992, sensitivity of 99.3 %, and much lower false positive rate of 4 %.

INTERPRETATION

The combined-parameter prediction model provided excellent diagnostic performance with low false positive rate. The application of the prediction model could decrease unnecessary PCR method for α-thalassemia testing, thereby decreasing the cost of investigation. Our proposed model can possibly have a great impact or significant change in clinical practice, especially in Southeast Asia.

摘要

背景

本研究旨在建立一种基于红细胞指数的预测模型,以提高非贫血孕妇α地中海贫血特征筛查的准确性。

方法

进行一项诊断性研究,作为对前瞻性数据库的二次分析。研究对象为孕妇,她们在首次产前检查时使用红细胞指数进行α地中海贫血筛查,并通过聚合酶链反应(PCR)方法进行确诊。通过逻辑回归分析确定每个红细胞参数及其组合在预测α地中海贫血特征方面的诊断性能。

结果

共有587名泰国孕妇纳入分析,其中136例为α地中海贫血特征患者,451例为正常对照。诊断性能分析显示,平均红细胞体积(MCV)的灵敏度为98.5%,假阳性率为20.2%。而平均红细胞血红蛋白含量(MCH)的灵敏度为99.3%,假阳性率为15.7%。包括血红蛋白(Hb)、MCV、MCH、平均红细胞血红蛋白浓度(MCHC)、红细胞分布宽度(RDW)和红细胞计数(RBC)的联合参数预测模型表现出优异的诊断性能,曲线下面积(AUC)为0.992,灵敏度为99.3%,假阳性率低至4%。

解读

联合参数预测模型具有优异的诊断性能和低假阳性率。该预测模型的应用可减少α地中海贫血检测中不必要的PCR方法,从而降低检测成本。我们提出的模型可能会对临床实践产生重大影响或显著改变,尤其是在东南亚地区。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddbd/11620090/2009613c32e8/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验