Zhang Xuhui, Goodwin Zachary A H, Hoane Alexis G, Deptula Alex, Markiewitz Daniel M, Molinari Nicola, Zheng Qianlu, Li Hua, McEldrew Michael, Kozinsky Boris, Bazant Martin Z, Leal Cecilia, Atkin Rob, Gewirth Andrew A, Rutland Mark W, Espinosa-Marzal Rosa M
Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.
ACS Nano. 2024 Dec 17;18(50):34007-34022. doi: 10.1021/acsnano.4c09355. Epub 2024 Dec 6.
Ionic liquids (ILs) are a promising class of electrolytes with a unique combination of properties, such as extremely low vapor pressures and nonflammability. Doping ILs with alkali metal salts creates an electrolyte that is of interest for battery technology. These salt-in-ionic liquids (SiILs) are a class of superconcentrated, strongly correlated, and asymmetric electrolytes. Notably, the transference numbers of the alkali metal cations have been found to be negative. Here, we investigate Na-based SiILs with a surface force apparatus, X-ray scattering, and atomic force microscopy. We find evidence of confinement-induced structural changes, giving rise to long-range interactions. Force curves also reveal an electrolyte structure consistent with our predictions from theory and simulations. The long-range steric interactions in SiILs reflect the high aspect ratio of compressible aggregates at the interfaces rather than the purely electrostatic origin predicted by the classical electrolyte theory. This conclusion is supported by the reported anomalous negative transference numbers, which can be explained within the same aggregation framework. The interfacial nanostructure should impact the formation of the solid electrolyte interphase in SiILs.
离子液体(ILs)是一类很有前景的电解质,具有诸如极低蒸气压和不可燃性等独特的性能组合。用碱金属盐掺杂离子液体可制得一种对电池技术具有吸引力的电解质。这些离子液体中的盐(SiILs)是一类超浓缩、强关联且不对称的电解质。值得注意的是,已发现碱金属阳离子的迁移数为负。在此,我们使用表面力仪、X射线散射和原子力显微镜对基于钠的SiILs进行研究。我们发现了受限诱导结构变化的证据,这种变化产生了长程相互作用。力曲线还揭示了一种与我们从理论和模拟得出的预测相一致的电解质结构。SiILs中的长程空间相互作用反映了界面处可压缩聚集体的高纵横比,而非经典电解质理论所预测的纯粹静电起源。这一结论得到了所报道的反常负迁移数的支持,这些迁移数可在相同的聚集框架内得到解释。界面纳米结构应会影响SiILs中固体电解质界面相的形成。