Suppr超能文献

设计用于超浓缩离子液体电解质以改善循环性能的高能量密度钠电池阳极。

Engineering high-energy-density sodium battery anodes for improved cycling with superconcentrated ionic-liquid electrolytes.

作者信息

Rakov Dmitrii A, Chen Fangfang, Ferdousi Shammi A, Li Hua, Pathirana Thushan, Simonov Alexandr N, Howlett Patrick C, Atkin Rob, Forsyth Maria

机构信息

Institute for Frontier Materials, Deakin University, Geelong, Victoria, Australia.

ARC Centre of Excellence for Electromaterials Science (ACES), Deakin University, Burwood, Victoria, Australia.

出版信息

Nat Mater. 2020 Oct;19(10):1096-1101. doi: 10.1038/s41563-020-0673-0. Epub 2020 May 4.

Abstract

Non-uniform metal deposition and dendrite formation in high-density energy storage devices reduces the efficiency, safety and life of batteries with metal anodes. Superconcentrated ionic-liquid electrolytes (for example 1:1 ionic liquid:alkali ion) coupled with anode preconditioning at more negative potentials can completely mitigate these issues, and therefore revolutionize high-density energy storage devices. However, the mechanisms by which very high salt concentration and preconditioning potential enable uniform metal deposition and prevent dendrite formation at the metal anode during cycling are poorly understood, and therefore not optimized. Here, we use atomic force microscopy and molecular dynamics simulations to unravel the influence of these factors on the interface chemistry in a sodium electrolyte, demonstrating how a molten-salt-like structure at the electrode surface results in dendrite-free metal cycling at higher rates. Such a structure will support the formation of a more favourable solid electrolyte interphase, accepted as being a critical factor in stable battery cycling. This new understanding will enable engineering of efficient anode electrodes by tuning the interfacial nanostructure via salt concentration and high-voltage preconditioning.

摘要

高密度储能装置中金属沉积不均匀和枝晶形成会降低含金属阳极电池的效率、安全性和寿命。超浓离子液体电解质(例如1:1离子液体:碱金属离子)与在更负电位下的阳极预处理相结合,可以完全缓解这些问题,从而彻底改变高密度储能装置。然而,目前人们对极高盐浓度和预处理电位在循环过程中实现金属均匀沉积并防止金属阳极形成枝晶的机制了解甚少,因此尚未得到优化。在此,我们使用原子力显微镜和分子动力学模拟来揭示这些因素对钠电解质中界面化学的影响,证明电极表面类似熔盐的结构如何实现更高速率的无枝晶金属循环。这种结构将有助于形成更有利的固体电解质界面相,这被认为是电池稳定循环的关键因素。这一新认识将通过盐浓度和高压预处理来调节界面纳米结构,从而实现高效阳极电极的工程化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验