Suppr超能文献

人T细胞中茎环介导的转基因调控

Stem Loop Mediated Transgene Modulation in Human T Cells.

作者信息

Mai David, Harro Carly, Sanyal Aabir, Rommel Philipp C, Sheppard Neil C, June Carl H

机构信息

Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

Center for Cellular Immunotherapies, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States.

出版信息

ACS Synth Biol. 2024 Dec 20;13(12):3897-3907. doi: 10.1021/acssynbio.4c00152. Epub 2024 Dec 6.

Abstract

Controlling gene expression is useful for many applications, but current methods often require external user inputs, such as the addition of a drug. We present an alternative approach using cell-autonomous triggers based on RNA stem loop structures in the 3' untranslated regions (UTRs) of mRNA. These stem loops are targeted by the RNA binding proteins Regnase-1 and Roquin-1, allowing us to program stimulation-induced transgene regulation in primary human T cells. By incorporating engineered stem loops into the 3' UTRs of transgenes, we achieved transgene repression through Regnase-1 and Roquin-1 activity, dynamic upregulation upon stimulation, and orthogonal tunability. To demonstrate the utility of this system, we employed it to modulate payloads in CAR-T cells. Our findings highlight the potential of leveraging endogenous regulatory machinery in T cells for transgene regulation and suggest RNA structure as a valuable layer for regulatory modulation.

摘要

控制基因表达在许多应用中都很有用,但目前的方法通常需要外部用户输入,比如添加药物。我们提出了一种基于mRNA 3'非翻译区(UTR)中RNA茎环结构的细胞自主触发的替代方法。这些茎环是RNA结合蛋白Regnase-1和Roquin-1的作用靶点,使我们能够在原代人T细胞中对刺激诱导的转基因调控进行编程。通过将工程化茎环整合到转基因的3'UTR中,我们实现了通过Regnase-1和Roquin-1活性进行转基因抑制、刺激时的动态上调以及正交可调性。为了证明该系统的实用性,我们将其用于调节嵌合抗原受体T细胞(CAR-T细胞)中的负载。我们的研究结果突出了利用T细胞内源性调控机制进行转基因调控的潜力,并表明RNA结构是调控调节的一个有价值层面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dac8/11669162/dbba00994cb3/sb4c00152_0001.jpg

相似文献

1
Stem Loop Mediated Transgene Modulation in Human T Cells.
ACS Synth Biol. 2024 Dec 20;13(12):3897-3907. doi: 10.1021/acssynbio.4c00152. Epub 2024 Dec 6.
2
Roquin targets mRNAs in a 3'-UTR-specific manner by different modes of regulation.
Nat Commun. 2018 Sep 19;9(1):3810. doi: 10.1038/s41467-018-06184-3.
3
Cooperation of RNA-Binding Proteins - a Focus on Roquin Function in T Cells.
Front Immunol. 2022 Feb 18;13:839762. doi: 10.3389/fimmu.2022.839762. eCollection 2022.
4
Evolution of the RNA alternative decay element into a high-affinity target for the immunomodulatory protein Roquin.
RNA Biol. 2025 Dec;22(1):1-12. doi: 10.1080/15476286.2024.2448391. Epub 2025 Jan 13.
5
Endonuclease Regnase-1/Monocyte chemotactic protein-1-induced protein-1 (MCPIP1) in controlling immune responses and beyond.
Wiley Interdiscip Rev RNA. 2018 Jan;9(1). doi: 10.1002/wrna.1449. Epub 2017 Sep 20.
6
Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA.
Nature. 2007 Nov 8;450(7167):299-303. doi: 10.1038/nature06253.
7
Regnase-1 and Roquin Nonredundantly Regulate Th1 Differentiation Causing Cardiac Inflammation and Fibrosis.
J Immunol. 2017 Dec 15;199(12):4066-4077. doi: 10.4049/jimmunol.1701211. Epub 2017 Nov 10.
8
The silencing of ets-4 mRNA relies on the functional cooperation between REGE-1/Regnase-1 and RLE-1/Roquin-1.
Nucleic Acids Res. 2022 Aug 12;50(14):8226-8239. doi: 10.1093/nar/gkac609.
9
Identification of new high affinity targets for Roquin based on structural conservation.
Nucleic Acids Res. 2018 Dec 14;46(22):12109-12125. doi: 10.1093/nar/gky908.
10
Control of RNA Stability in Immunity.
Annu Rev Immunol. 2021 Apr 26;39:481-509. doi: 10.1146/annurev-immunol-101819-075147. Epub 2021 Feb 12.

本文引用的文献

1
IL-18-secreting CAR T cells targeting DLL3 are highly effective in small cell lung cancer models.
J Clin Invest. 2023 May 1;133(9):e166028. doi: 10.1172/JCI166028.
2
Combined disruption of T cell inflammatory regulators Regnase-1 and Roquin-1 enhances antitumor activity of engineered human T cells.
Proc Natl Acad Sci U S A. 2023 Mar 21;120(12):e2218632120. doi: 10.1073/pnas.2218632120. Epub 2023 Mar 15.
3
Co-opting signalling molecules enables logic-gated control of CAR T cells.
Nature. 2023 Mar;615(7952):507-516. doi: 10.1038/s41586-023-05778-2. Epub 2023 Mar 8.
4
Small molecule-inducible gene regulatory systems in mammalian cells: progress and design principles.
Curr Opin Biotechnol. 2022 Dec;78:102823. doi: 10.1016/j.copbio.2022.102823. Epub 2022 Oct 27.
5
High-performance multiplex drug-gated CAR circuits.
Cancer Cell. 2022 Nov 14;40(11):1294-1305.e4. doi: 10.1016/j.ccell.2022.08.008. Epub 2022 Sep 8.
6
Enhanced safety and efficacy of protease-regulated CAR-T cell receptors.
Cell. 2022 May 12;185(10):1745-1763.e22. doi: 10.1016/j.cell.2022.03.041. Epub 2022 Apr 27.
7
Sense-and-Respond Payload Delivery Using a Novel Antigen-Inducible Promoter Improves Suboptimal CAR-T Activation.
ACS Synth Biol. 2022 Apr 15;11(4):1440-1453. doi: 10.1021/acssynbio.1c00236. Epub 2022 Mar 22.
8
Decade-long leukaemia remissions with persistence of CD4 CAR T cells.
Nature. 2022 Feb;602(7897):503-509. doi: 10.1038/s41586-021-04390-6. Epub 2022 Feb 2.
10
Disrupting Roquin-1 interaction with Regnase-1 induces autoimmunity and enhances antitumor responses.
Nat Immunol. 2021 Dec;22(12):1563-1576. doi: 10.1038/s41590-021-01064-3. Epub 2021 Nov 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验