Tants Jan-Niklas, Friedrich Katharina, Neumann Jasmina, Schlundt Andreas
Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Frankfurt, Germany.
Institute of Biochemistry, University of Greifswald, Greifswald, Germany.
RNA Biol. 2025 Dec;22(1):1-12. doi: 10.1080/15476286.2024.2448391. Epub 2025 Jan 13.
RNA elements play pivotal roles in regulatory processes, e.g. in transcriptional and translational regulation. Two stem-looped elements, the constitutive and alternative decay elements (CDE and ADE, respectively) are shape-specifically recognized in mRNA 3' untranslated regions (UTRs) by the immune-regulatory protein Roquin. Roquin initiates mRNA decay and contributes to balanced transcript levels required for immune homoeostasis. While the interaction of Roquin with several CDEs is described, our knowledge about ADE complex formation is limited to the mRNA of , a gene encoding a T-cell costimulatory receptor. The 3'UTR comprises both a CDE and ADE, each sufficient for Roquin-mediated control. Opposed to highly conserved and abundant CDE structures, ADEs are rarer, but predicted to exhibit a greater structural heterogeneity. This raises the question of how and when two structurally distinct elements evolved as equal target motifs for Roquin. Using an interdisciplinary approach, we here monitor the evolution of sequence and structure features of the ADE across species. We designed RNA variants to probe en-detail determinants steering Roquin-RNA complex formation. Specifically, those reveal the contribution of a second RNA-binding interface of Roquin for recognition of the ADE basal stem region. In sum, our study sheds light on how the conserved Roquin protein selected ADE-specific structural features to evolve a second high-affinity mRNA target element relevant for adaptive immune regulation. As our findings also allow expanding the RNA target spectrum of Roquin, the approach can serve a paradigm for understanding RNA-protein specificity through back-tracing the evolution of the RNA element.
RNA元件在调控过程中发挥着关键作用,例如在转录和翻译调控中。两种茎环元件,即组成型和可变衰减元件(分别为CDE和ADE),在mRNA的3'非翻译区(UTR)中被免疫调节蛋白Roquin特异性识别。Roquin启动mRNA降解,并有助于维持免疫稳态所需的平衡转录水平。虽然已经描述了Roquin与几种CDE的相互作用,但我们对ADE复合物形成的了解仅限于编码T细胞共刺激受体的基因的mRNA。该基因的3'UTR包含一个CDE和一个ADE,每个元件都足以进行Roquin介导的调控。与高度保守且丰富的CDE结构不同,ADE较为罕见,但预计会表现出更大的结构异质性。这就提出了一个问题,即两个结构不同的元件是如何以及何时演变成Roquin的同等靶基序的。我们采用跨学科方法,在此监测了ADE在不同物种中的序列和结构特征的演变。我们设计了RNA变体,以详细探究引导Roquin-RNA复合物形成的决定因素。具体而言,这些变体揭示了Roquin的第二个RNA结合界面在识别ADE基础茎区域中的作用。总之,我们的研究揭示了保守的Roquin蛋白如何选择ADE特异性结构特征,以进化出与适应性免疫调节相关的第二个高亲和力mRNA靶元件。由于我们的发现还允许扩展Roquin的RNA靶标谱,该方法可作为通过追溯RNA元件的进化来理解RNA-蛋白质特异性的范例。