León-Ecay Sara, López-Campos Óscar, López-Maestresalas Ainara, Insausti Kizkitza, Schmidt Bryden, Prieto Nuria
Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, Alberta T4L 1W1, Canada; Institute on Innovation and Sustainable Development in Food Chain (IS-FOOD), Universidad Pública de Navarra (UPNA), Campus de Arrosadia, Pamplona 31006, Spain.
Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, Alberta T4L 1W1, Canada.
Food Res Int. 2024 Dec;198:115327. doi: 10.1016/j.foodres.2024.115327. Epub 2024 Nov 13.
Meat product labels including information on livestock production systems are increasingly demanded, as consumers request total traceability of the products. The aim of this study was to explore the potential of visible and near-infrared spectroscopy (Vis-NIRS) to authenticate meat and fat from steers raised under different feeding systems (barley, corn, grass-fed). In total, spectra from 45 steers were collected (380-2,500 nm) on the subcutaneous fat and intact longissimus thoracis (LT) at 72 h postmortem and, after fabrication, on the frozen-thawed ground longissimus lumborum (LL). In subcutaneous fat samples, excellent results were obtained using partial least squares-discriminant analysis (PLS-DA) with the 100 % of the samples in external Test correctly classified (Vis, NIR or Vis-NIR regions); whereas linear-support vector machine (L-SVM) discriminated 75-100 % in Test (Vis-NIR range). In intact meat samples, PLS-DA segregated 100 % of the samples in Test (Vis-NIR region). A slightly lower percentage of meat samples were correctly classified by L-SVM using the NIR region (75-100 % in Train and Test). For ground meat, 100 % of correctly classified samples in Test was achieved using Vis, NIR or Vis-NIR spectral regions with PLS-DA and the Vis with L-SVM. Variable importance in projection (VIP) reported the influence of fat and meat pigments as well as fat, fatty acids, protein, and moisture absorption for the discriminant analyses. From the results obtained with the animals and diets used in this study, NIRS technology stands out as a reliable and green analytical tool to authenticate fat and meat from different livestock production systems.
随着消费者要求产品具有完全可追溯性,包含牲畜生产系统信息的肉类产品标签需求日益增加。本研究的目的是探索可见和近红外光谱(Vis-NIRS)对不同饲养系统(大麦、玉米、草饲)饲养的公牛的肉和脂肪进行鉴别的潜力。总共收集了45头公牛在死后72小时时皮下脂肪和完整胸段最长肌(LT)的光谱(380 - 2500纳米),以及制成品冻融后腰大肌(LL)的光谱。在皮下脂肪样本中,使用偏最小二乘判别分析(PLS-DA)获得了优异结果,外部测试中100%的样本被正确分类(可见光、近红外或可见-近红外区域);而线性支持向量机(L-SVM)在测试中(可见-近红外范围)的判别率为75 - 100%。在完整肉样本中,PLS-DA在测试中(可见-近红外区域)将100%的样本区分开。使用近红外区域,L-SVM对肉样本的正确分类百分比略低(训练和测试中为75 - 100%)。对于绞碎肉,使用PLS-DA的可见光、近红外或可见-近红外光谱区域以及使用可见光的L-SVM在测试中实现了100%的正确分类样本。投影变量重要性(VIP)报告了脂肪和肉色素以及脂肪、脂肪酸、蛋白质和水分吸收对判别分析的影响。从本研究中使用的动物和日粮所获得的结果来看,近红外光谱技术是鉴别来自不同牲畜生产系统的脂肪和肉的可靠且绿色的分析工具。