Peneva Stoyana, Le Quynh Nhu Phan, Munhoz Davi R, Wrigley Olivia, Wille Flora, Doose Heidi, Halsall Crispin, Harkes Paula, Sander Michael, Braun Melanie, Amelung Wulf
Wessling GmbH, AM Umweltpark 1, Bochum 44793, Germany; Institute of Crop Science and Resource Conservation (INRES), Soil Science and Soil Ecology, University of Bonn, Nussallee 13, Bonn 53115, Germany.
Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
Ecotoxicol Environ Saf. 2025 Jan 1;289:117428. doi: 10.1016/j.ecoenv.2024.117428. Epub 2024 Dec 6.
Microplastic (MiP) contamination poses environmental risks, but harmonizing data from different quantification methods and sample matrices remains challenging. We compared analytical protocols for MiP quantification in soil, consisting of Digital, Fluorescence, Fourier-transform infrared (FTIR), and Raman Microscopy as well as quantitative Pyrolysis-Gas Chromatography-Mass Spectroscopy (Py-GC-MS) and 1-proton nuclear magnetic resonance (H NMR) spectroscopy as detection techniques. Each technique was coupled with a specific extraction procedure and evaluated for three soils with different textures and organic carbon contents, amended with eight types of large MiPs (0.5-1 mm) - high- and low-density polyethylene (HDPE and LDPE), polypropylene (PP), polystyrene (PS), polyamide (PA), polyethylene terephthalate (PET), polyvinyl chloride (PVC), and a biodegradable mulch film product composed of polybutylene adipate-co-terephthalate/ polylactic acid (PBAT/ PLA). In addition, we included two types of small MiPs (20-250 µm) composed of either LDPE or PBAT/ PLA in the tests. The results showed that protocols for Digital, Fluorescence, and ATR-FTIR microscopy recovered 74-98 % of the large MiPs, with fluorescence yielding the highest recoveries. Raman spectroscopy was most sensitive to soil organic matter residues, requiring more sophisticated sample pretreatment. Fluorescence staining with subsequent Fluorescence microscopy detection effectively recovered most small-sized LDPE-MiP but missed 56-93 % of small PBAT/ PLA particles. For the latter, reliable quantification was achieved only using Soxhlet extraction combined with H NMR spectroscopic quantification. Pyrolysis-GC-MS showed intermediate results, displaying low sensitivity to plastic type and lower recoveries as soil clay content increased. We conclude that different methods have different sensitivities for different MiP materials in different soils, i.e. comparisons of MiP loads and threshold settings for MiP loads across methodologies require careful consideration. Yet, our data indicate that adding stained large MiP as an internal standard could enhance extraction control, while Soxhlet-extraction with subsequent H NMR analysis is most powerful for controlling future thresholds of small MiP from biodegradable materials.
微塑料(MiP)污染带来环境风险,但整合来自不同量化方法和样品基质的数据仍具有挑战性。我们比较了土壤中MiP量化的分析方案,包括数字显微镜、荧光显微镜、傅里叶变换红外(FTIR)显微镜和拉曼显微镜,以及作为检测技术的定量热解气相色谱-质谱联用仪(Py-GC-MS)和1-质子核磁共振(H NMR)光谱仪。每种技术都与特定的提取程序相结合,并针对三种质地和有机碳含量不同的土壤进行评估,这些土壤用八种类型的大型微塑料(0.5-1毫米)进行了改良——高密度和低密度聚乙烯(HDPE和LDPE)、聚丙烯(PP)、聚苯乙烯(PS)、聚酰胺(PA)、聚对苯二甲酸乙二酯(PET)、聚氯乙烯(PVC),以及由聚己二酸丁二醇酯-对苯二甲酸酯/聚乳酸(PBAT/PLA)组成的可生物降解地膜产品。此外,我们在测试中纳入了两种由LDPE或PBAT/PLA组成的小型微塑料(20-250微米)。结果表明,数字显微镜、荧光显微镜和衰减全反射傅里叶变换红外(ATR-FTIR)显微镜方案回收了74-98%的大型微塑料,其中荧光显微镜的回收率最高。拉曼光谱对土壤有机质残留最为敏感,需要更复杂的样品预处理。后续荧光显微镜检测的荧光染色有效地回收了大多数小尺寸的LDPE微塑料,但遗漏了56-93%的小PBAT/PLA颗粒。对于后者,只有使用索氏提取结合H NMR光谱定量才能实现可靠的定量。热解气相色谱-质谱联用仪显示出中等结果,对塑料类型的敏感性较低,并且随着土壤粘土含量的增加回收率降低。我们得出结论,不同方法对不同土壤中不同的微塑料材料具有不同的灵敏度,即跨方法比较微塑料负荷和微塑料负荷的阈值设置需要仔细考虑。然而,我们的数据表明,添加染色的大型微塑料作为内标可以加强提取控制,而索氏提取结合后续的H NMR分析对于控制未来可生物降解材料的小型微塑料阈值最为有效。