Suppr超能文献

通过大型视觉模型实现的多维度方向性增强分割

Multidimensional Directionality-Enhanced Segmentation via large vision model.

作者信息

Huang Xingru, Yue Changpeng, Guo Yihao, Huang Jian, Jiang Zhengyao, Wang Mingkuan, Xu Zhaoyang, Zhang Guangyuan, Liu Jin, Zhang Tianyun, Zheng Zhiwen, Zhang Xiaoshuai, He Hong, Jiang Shaowei, Sun Yaoqi

机构信息

Hangzhou Dianzi University, Hangzhou, China; School of Electronic Engineering and Computer Science, Queen Mary University, London, UK.

Hangzhou Dianzi University, Hangzhou, China.

出版信息

Med Image Anal. 2025 Apr;101:103395. doi: 10.1016/j.media.2024.103395. Epub 2024 Nov 25.

Abstract

Optical Coherence Tomography (OCT) facilitates a comprehensive examination of macular edema and associated lesions. Manual delineation of retinal fluid is labor-intensive and error-prone, necessitating an automated diagnostic and therapeutic planning mechanism. Conventional supervised learning models are hindered by dataset limitations, while Transformer-based large vision models exhibit challenges in medical image segmentation, particularly in detecting small, subtle lesions in OCT images. This paper introduces the Multidimensional Directionality-Enhanced Retinal Fluid Segmentation framework (MD-DERFS), which reduces the limitations inherent in conventional supervised models by adapting a transformer-based large vision model for macular edema segmentation. The proposed MD-DERFS introduces a Multi-Dimensional Feature Re-Encoder Unit (MFU) to augment the model's proficiency in recognizing specific textures and pathological features through directional prior extraction and an Edema Texture Mapping Unit (ETMU), a Cross-scale Directional Insight Network (CDIN) furnishes a holistic perspective spanning local to global details, mitigating the large vision model's deficiencies in capturing localized feature information. Additionally, the framework is augmented by a Harmonic Minutiae Segmentation Equilibrium loss (L) that can address the challenges of data imbalance and annotation scarcity in macular edema datasets. Empirical validation on the MacuScan-8k dataset shows that MD-DERFS surpasses existing segmentation methodologies, demonstrating its efficacy in adapting large vision models for boundary-sensitive medical imaging tasks. The code is publicly available at https://github.com/IMOP-lab/MD-DERFS-Pytorch.git.

摘要

光学相干断层扫描(OCT)有助于对黄斑水肿及相关病变进行全面检查。手动勾勒视网膜积液既费力又容易出错,因此需要一种自动化的诊断和治疗规划机制。传统的监督学习模型受到数据集限制的阻碍,而基于Transformer的大型视觉模型在医学图像分割中存在挑战,尤其是在检测OCT图像中的微小、细微病变方面。本文介绍了多维方向性增强视网膜积液分割框架(MD-DERFS),该框架通过将基于Transformer的大型视觉模型应用于黄斑水肿分割,减少了传统监督模型固有的局限性。所提出的MD-DERFS引入了一个多维特征重新编码器单元(MFU),通过方向先验提取来提高模型识别特定纹理和病理特征的能力,以及一个水肿纹理映射单元(ETMU),一个跨尺度方向洞察网络(CDIN)提供了一个从局部到全局细节的整体视角,减轻了大型视觉模型在捕获局部特征信息方面的不足。此外,该框架还通过谐波细节分割平衡损失(L)进行了增强,该损失可以解决黄斑水肿数据集中数据不平衡和标注稀缺的挑战。在MacuScan-8k数据集上的实证验证表明,MD-DERFS超过了现有的分割方法,证明了其在将大型视觉模型应用于边界敏感的医学成像任务方面的有效性。代码可在https://github.com/IMOP-lab/MD-DERFS-Pytorch.git上公开获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验