Nasiru Mustapha Muhammad, Boateng Evans Frimpong, Alnadari Fawze, Bako Hadiza Kabir, Ibeogu Henry Isaiah, Feng Jin, Song Jiangfeng, Liu Huan, Zhang Qingqiang, Masisi Kabo, Roth Chuon Mony, Yan Wenjing, Zhang Jianhao, Li Chunyang
Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China.
Department of Food Science and Technology, School of Agriculture and Technology, University of Energy and Natural Resources, Bono, Ghana.
Int J Biol Macromol. 2025 Jan;286:138407. doi: 10.1016/j.ijbiomac.2024.138407. Epub 2024 Dec 5.
This study investigates the effects of cold plasma (CP) treatment on peanut protein isolate (PPI), focusing on functionality, rheology, and structural modifications across various treatment times (0, 90, 180, 270, 360, and 450 s) and voltages (120, 140, and 160 kV). Key findings include a significant increase in solubility from 9.99 mg/mL to 15.98 mg/mL, as well as 161.07 % enhanced water-holding capacity (WHC) and 448.45 % oil-holding capacity (OHC). CP treatment also improved foaming capacity (FC) to 186.46 % and increased emulsion capacity (EC) and emulsion stability (ES) by 185.90 % at 160 kV. Rheological analysis showed shear-thinning behaviour, with viscosity decreasing as the shear rate increased-higher voltages (140 kV and 160 kV) further reduced viscosity, indicating lower resistance to flow. Additionally, CP-treated PPI exhibited viscoelasticity, with increased storage and loss moduli at higher frequencies, indicating greater stiffness. Spectroscopic studies demonstrated shifts in the protein's secondary structure, altering the balance among alpha-helix, beta-sheet, and random coil components, which highlights CP's role in reengineering PPI. FTIR-ATR spectra revealed reductions in the 3200-3400 cm range, suggesting changes in protein backbone vibrations and hydrogen bonding. Particle size analysis showed significant increases, especially at higher voltages and longer treatment times, stabilizing after 270 s. Zeta potential assays indicated a gradual decrease in negative surface charge, suggesting enhanced protein aggregation. Overall, CP treatment significantly improves the functional and rheological properties of PPI while inducing structural changes, making it more suitable for applications in the food and pharmaceutical industries.
本研究调查了冷等离子体(CP)处理对花生分离蛋白(PPI)的影响,重点关注不同处理时间(0、90、180、270、360和450秒)和电压(120、140和160千伏)下的功能、流变学和结构变化。主要研究结果包括:溶解度从9.99毫克/毫升显著提高到15.98毫克/毫升,保水能力(WHC)提高了161.07%,持油能力(OHC)提高了448.45%。CP处理还将发泡能力(FC)提高到186.46%,并在160千伏时将乳化能力(EC)和乳化稳定性(ES)提高了185.90%。流变学分析表明呈现剪切变稀行为,随着剪切速率增加粘度降低,更高的电压(140千伏和160千伏)进一步降低粘度,表明流动阻力更低。此外,经CP处理的PPI表现出粘弹性,在更高频率下储能模量和损耗模量增加,表明刚度更大。光谱研究表明蛋白质二级结构发生了变化,可以改变α-螺旋、β-折叠和无规卷曲成分之间的平衡,这突出了CP在改造PPI中的作用。傅里叶变换红外光谱-衰减全反射(FTIR-ATR)光谱显示在3200-3400厘米范围内有所降低,表明蛋白质主链振动和氢键发生了变化。粒度分析显示显著增加,尤其是在更高电压和更长处理时间下,在270秒后趋于稳定。zeta电位测定表明表面负电荷逐渐减少,表明蛋白质聚集增强。总体而言,CP处理显著改善了PPI的功能和流变学特性,同时诱导了结构变化,使其更适合在食品和制药行业中应用。