Suppr超能文献

用于预测非小细胞肺癌脑转移患者表皮生长因子受体状态的CT和MRI双模态影像组学:一项多中心研究

CT and MRI bimodal radiomics for predicting EGFR status in NSCLC patients with brain metastases: A multicenter study.

作者信息

Ouyang Zhiqiang, Zhang Guodong, He Shaonan, Huang Qiubo, Zhang Liren, Duan Xirui, Zhang Xuerong, Liu Yifan, Ke Tengfei, Yang Jun, Ai Conghui, Lu Yi, Liao Chengde

机构信息

Department of Radiology, Yan an Hospital of Kunming City (Yanan Hospital Affiliated to Kunming Medical University), 245 Renmin East Road, Kunming, Yunnan, China.

Bidding and Procurement Office, Yunnan Cancer Hospital (The Third Affiliated Hospital of Kunming Medical University), 519 Kunzhou Road, Kunming, Yunnan, China; Department of Chemistry, University of California, 900 University Avenue, Riverside, CA, United States.

出版信息

Eur J Radiol. 2025 Feb;183:111853. doi: 10.1016/j.ejrad.2024.111853. Epub 2024 Nov 28.

Abstract

BACKGROUND

Leveraging the radiomics information from non-small cell lung cancer (NSCLC) primary lesion and brain metastasis (BM) to develop and validate a bimodal radiomics nomogram that can accurately predict epidermal growth factor receptor (EGFR) status.

METHODS

A total of 309 NSCLC patients with BM from three independent centers were recruited. Among them, the patients of Center I were randomly allocated into the training and internal test cohorts in a 7:3 ratio. Meanwhile, the patients from Center Ⅱ and Center Ⅲ collectively constitute the external test cohort. All chest CT and brain MRI images of each patient were obtained for image registration and sequence combination within a single modality. After image preprocessing, 1037 radiomics features were extracted from each single sequence. Six machine learning algorithms were used to construct radiomics signatures for CT and MRI respectively. The best CT and MRI radiomics signatures were fitted to establish the bimodal radiomics nomogram for predicting the EGFR status.

RESULTS

The contrast-enhanced (CE) eXtreme gradient boosting (XG Boost) and T2-weighted imaging (T2WI) + T1-weighted contrast-enhanced imaging (T1CE) random forest models were chosen as the radiomics signature representing primary lesion and BM. Both models were found to be independent predictors of EGFR mutation. The bimodal radiomics nomogram, which incorporated CT radiomics signature and MRI radiomics signature, demonstrated a good calibration and discrimination in the internal test cohort [area under curve (AUC), 0.866; 95 % confidence intervals (CI), 0.778-0.950) and the external test cohort (AUC, 0.818; 95 % CI, 0.691-0.938).

CONCLUSIONS

Our CT and MRI bimodal radiomics nomogram could timely and accurately evaluate the likelihood of EGFR mutation in patients with limited access to necessary materials, thus making up for the shortcoming of plasma sequencing and promoting the advancement of precision medicine.

摘要

背景

利用非小细胞肺癌(NSCLC)原发灶和脑转移瘤(BM)的放射组学信息,开发并验证一种能够准确预测表皮生长因子受体(EGFR)状态的双模态放射组学列线图。

方法

招募了来自三个独立中心的309例伴有BM的NSCLC患者。其中,中心I的患者按7:3的比例随机分配到训练队列和内部测试队列。同时,来自中心II和中心III的患者共同构成外部测试队列。获取每位患者的所有胸部CT和脑部MRI图像,用于单模态内的图像配准和序列组合。经过图像预处理后,从每个单序列中提取1037个放射组学特征。分别使用六种机器学习算法构建CT和MRI的放射组学特征。拟合最佳的CT和MRI放射组学特征,以建立用于预测EGFR状态的双模态放射组学列线图。

结果

选择对比增强(CE)极端梯度提升(XG Boost)模型和T2加权成像(T2WI)+T1加权对比增强成像(T1CE)随机森林模型作为代表原发灶和BM的放射组学特征。发现这两个模型都是EGFR突变的独立预测因子。结合CT放射组学特征和MRI放射组学特征的双模态放射组学列线图在内部测试队列[曲线下面积(AUC),0.866;95%置信区间(CI),0.778 - 0.950]和外部测试队列(AUC,0.818;95%CI,0.691 - 0.938)中表现出良好的校准和区分能力。

结论

我们的CT和MRI双模态放射组学列线图能够及时、准确地评估在获取必要材料受限的患者中EGFR突变的可能性,从而弥补血浆测序的不足,推动精准医学的发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验