Suppr超能文献

使用不同方法对生物反应器中微生物群落组装过程的模式进行量化会导致结果各异。

Quantifying patterns of microbial community assembly processes in bioreactors using different approaches leads to variable results.

作者信息

Smith Savanna K, de Los Reyes Francis L

机构信息

Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, United States; Brown and Caldwell, 201 North Civic Drive, Suite 300, Walnut Creek, CA 94596, United States.

Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, United States.

出版信息

Water Res. 2025 Mar 15;272:122903. doi: 10.1016/j.watres.2024.122903. Epub 2024 Dec 2.

Abstract

Engineered bioreactors play a vital role in many processes to convert wastes to resources, such as biological wastewater treatment, bioremediation, and conversion of solid waste to methane in landfills. These biological systems rely on communities of microbes to convert waste to valuable resources. A central aspect of the design and operation of bioreactors involves an understanding of microbial community composition and dynamics, including the assembly processes through which they form. However, there remains a significant gap in our fundamental understanding of microbial community dynamics and microbial community assembly (MCA) processes, especially in engineered bioreactor settings. Here, we propose and employ a tool set that can be used by the research community, assess multiple bioreactor systems across a range of process types and ranges, and connect MCA patterns to relevant microbial groups in each bioreactor system. We applied multiple MCA assessment methods using available tools, layering on a trait-based approach, to seven experiments involving different engineered bioreactor systems. The calculated relative contributions of MCA processes varied by the method used, with null modeling approaches estimating a higher influence of stochastic MCA than neutral modeling. While most patterns of MCA were not discernible by general rules, anaerobic generalists assembled more deterministically than anaerobic specialists. Finally, statistical modeling of confidence levels suggests a minimum of 30-40 samples should be used for neutral modeling while a minimum 50-60 samples should be used for null modeling. Overall, we suggest caution when applying and interpreting the results of any one MCA assessment method.

摘要

工程生物反应器在许多将废物转化为资源的过程中发挥着至关重要的作用,例如生物废水处理、生物修复以及垃圾填埋场中固体废物向甲烷的转化。这些生物系统依靠微生物群落将废物转化为有价值的资源。生物反应器设计和运行的一个核心方面涉及对微生物群落组成和动态的理解,包括它们形成的组装过程。然而,我们对微生物群落动态和微生物群落组装(MCA)过程的基本理解仍存在重大差距,尤其是在工程生物反应器环境中。在此,我们提出并采用了一套工具集,可供研究界使用,评估一系列工艺类型和范围的多个生物反应器系统,并将MCA模式与每个生物反应器系统中的相关微生物组联系起来。我们使用可用工具应用了多种MCA评估方法,并采用基于特征的方法,对涉及不同工程生物反应器系统的七个实验进行了分析。计算得出的MCA过程的相对贡献因所使用的方法而异,零模型方法估计随机MCA的影响高于中性模型。虽然大多数MCA模式无法通过一般规则辨别,但厌氧通才比厌氧专才的组装更具确定性。最后,置信水平的统计建模表明,中性建模至少应使用30 - 40个样本,而零模型至少应使用50 - 60个样本。总体而言,我们建议在应用和解释任何一种MCA评估方法的结果时要谨慎。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验