Gong Xiangpu, Itzkowitz Nicole, Jephcote Calvin, Adams Kathryn, Atilola Glory O, Gulliver John, Blangiardo Marta, Hansell Anna
Centre for Environmental Health and Sustainability, University of Leicester, Leicester, UK.
The National Institute of Health and Care Research (NIHR) Health Protection Research Unit in Environmental Exposure and Health at the University of Leicester, Leicester, UK.
Public Health Res (Southampt). 2024 Dec;12(13):1-58. doi: 10.3310/UTCE9104.
Long-term exposure to aircraft noise has been associated with small increases in cardiovascular disease risk, but there are almost no short-term exposure studies.
Research questions were: Is there an association between short-term changes in exposure to aircraft noise and cardiovascular morbidity and mortality? What are the key effect modifiers? Is there variability in risk estimates between areas with consistent versus changing patterns of noise exposure? Do risk estimates differ when using different noise metrics?
Descriptive analyses of noise levels and variability at different times of day, analyses of inequalities in noise exposure and case-crossover analyses of cardiovascular events in relation to aircraft noise exposure.
Area surrounding London Heathrow airport.
2014-18.
Whole population in study area.
Cardiovascular disease hospitalisations and mortality.
Aircraft noise levels modelled using a standard noise model for: (1) daily equivalent continuous sound levels at different times of day; (2) daily number of events above defined noise thresholds (2018 only). National Health Service digital hospital admission records and Office for National Statistics mortality records for 2014-18 for cardiovascular outcomes, plus individual-level confounders available from healthcare records. Confounder data including road traffic noise (Leicester modelled), rail noise and air pollution (Department for Environment, Food and Rural Affairs), area level deprivation and ethnicity (UK Census).
The morning shoulder period (06.00-07.00 hours) was the noisiest of all eight bands (mean: 50.92 dB). The morning shoulder period also had the third highest number of noisy events (flights) > 60 dB per day, with three events across postcodes on average. However, the highest number of noisy events occurred in daytime (highest between 07.00 and 15.00 hours, second highest 15.00 and 19.00 hours). To identify areas with high variability in aircraft noise exposure (due to changes in flight paths because of wind direction and airport operations), we used coefficients of variation (CoV). The period 24.00-04.30 hours had the highest mean CoV (67.33-74.16), followed by 04.30-06.00 hours and 23.00-24.00 hours. Postcodes in the least deprived quintiles of Carstairs index or avoidable death rate had the lowest noise levels. In case-crossover analyses, we observed increased risk for cardiovascular disease hospital admissions for evening noise 19.00-23.00 hours (odds ratio 1.005, 95% confidence interval 1.000 to 1.010 per 5 dB), but not for other periods or mortality. Further analyses suggested that increased risks were occurring in postcodes with low CoV for noise. We found effect modification by age, sex, ethnicity, deprivation and season.
The industry standard noise model, the Aviation Environmental Design Tool, used does not take account of wind direction, which may have led to some exposure misclassification.
We developed a comprehensive dataset of daily aircraft noise variability. We found small associations between cardiovascular hospitalisations (but not deaths) and evening aircraft noise levels, particularly in areas with low variability of noise.
More studies are needed to understand the effect of noise variation and respite/relief on cardiovascular disease.
This award was funded by the National Institute for Health and Care Research (NIHR) Public Health Research programme (NIHR award ref: 15/192/13) and is published in full in ; Vol. 12, No. 13. See the NIHR Funding and Awards website for further award information.
长期暴露于飞机噪音与心血管疾病风险的小幅增加有关,但几乎没有短期暴露研究。
研究问题如下:飞机噪音暴露的短期变化与心血管疾病的发病率和死亡率之间是否存在关联?关键的效应修饰因素有哪些?在噪音暴露模式一致与变化的地区之间,风险估计是否存在差异?使用不同的噪音指标时,风险估计是否不同?
对一天中不同时间的噪音水平和变异性进行描述性分析,对噪音暴露的不平等性进行分析,并对与飞机噪音暴露相关的心血管事件进行病例交叉分析。
伦敦希思罗机场周边地区。
2014 - 2018年。
研究区域内的全部人口。
心血管疾病住院率和死亡率。
使用标准噪音模型模拟飞机噪音水平,用于:(1)一天中不同时间的日等效连续声级;(2)高于定义噪音阈值的每日事件数量(仅2018年)。2014 - 2018年国家医疗服务体系数字医院入院记录和国家统计局死亡率记录,用于心血管结局,以及可从医疗记录中获得的个体水平混杂因素。混杂因素数据包括道路交通噪音(莱斯特模型)、铁路噪音和空气污染(环境、食品和农村事务部)、地区层面的贫困程度和种族(英国人口普查)。
早晨高峰时段(06:00 - 07:00)是所有八个时段中噪音最大的(平均:50.92分贝)。早晨高峰时段每天噪音事件(航班)>60分贝的数量也排名第三,平均每个邮政编码区域有三起事件。然而,噪音事件数量最多的时段是白天(07:00至15:00之间最高,15:00至19:00之间第二高)。为了确定飞机噪音暴露变异性高的区域(由于风向和机场运营导致飞行路径变化),我们使用了变异系数(CoV)。00:00 - 04:30时段的平均CoV最高(67.33 - 74.16),其次是04:30 - 06:00时段和23:00 - 24:00时段。卡尔斯蒂尔指数或可避免死亡率最不贫困五分位数的邮政编码区域噪音水平最低。在病例交叉分析中,我们观察到19:00 - 23:00时段的晚间噪音导致心血管疾病住院风险增加(优势比1.005,每5分贝的95%置信区间为1.000至1.010),但其他时段或死亡率无此情况。进一步分析表明,噪音CoV低的邮政编码区域风险增加。我们发现年龄、性别、种族、贫困程度和季节存在效应修饰作用。
所使用的行业标准噪音模型,即航空环境设计工具,未考虑风向,这可能导致一些暴露误分类。
我们开发了一个关于每日飞机噪音变异性的综合数据集。我们发现心血管疾病住院(而非死亡)与晚间飞机噪音水平之间存在小的关联,特别是在噪音变异性低的地区。
需要更多研究来了解噪音变化以及缓解/减轻措施对心血管疾病的影响。
本奖项由国家卫生与保健研究机构(NIHR)公共卫生研究项目资助(NIHR奖项编号:15/192/13),全文发表于《》第12卷,第13期。有关更多奖项信息,请访问NIHR资金与奖项网站。