He Lu, Wang Shuo, Yu Fengjiao, Chen Yuhui
State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University Nanjing 211816 China
Chem Sci. 2024 Dec 2;16(2):627-636. doi: 10.1039/d4sc05911e. eCollection 2025 Jan 2.
While lithium-oxygen batteries have a high theoretical specific energy, the practical discharge capacity is much lower due to the passivation of the solid discharge product, LiO, on the electrode surface. Herein, we studied and quantified the deposition and dissolution kinetics of LiO using an electrochemical quartz crystal microbalance (EQCM). It is found that the orientation of the electrode greatly influences the formation path and deposition amount of LiO. We identified two distinct dissolution modes: surface dissolution and bulk fragmentation, with the latter 100 times faster than the former. By revealing the underlying factors affecting dissolution, 80% of LiO can dissolve within 3 minutes when a desorption potential of 2.9 V is applied. Consequently, we designed an intermittent-desorption discharge strategy, which increased the discharge capacity by an order of magnitude. This work shows that high practical specific energy of Li-O batteries can be achieved once problems of LiO dissolution are addressed.
虽然锂氧电池具有较高的理论比能量,但由于固体放电产物LiO在电极表面的钝化,其实际放电容量要低得多。在此,我们使用电化学石英晶体微天平(EQCM)研究并量化了LiO的沉积和溶解动力学。发现电极的取向对LiO的形成路径和沉积量有很大影响。我们确定了两种不同的溶解模式:表面溶解和整体破碎,后者比前者快100倍。通过揭示影响溶解的潜在因素,当施加2.9 V的解吸电位时,80%的LiO可在3分钟内溶解。因此,我们设计了一种间歇解吸放电策略,使放电容量提高了一个数量级。这项工作表明,一旦解决了LiO溶解问题,就可以实现锂氧电池的高实际比能量。