Suppr超能文献

iResNetDM:一种用于四种DNA甲基化修饰预测的可解释深度学习方法。

iResNetDM: An interpretable deep learning approach for four types of DNA methylation modification prediction.

作者信息

Yang Zerui, Shao Wei, Matsuda Yudai, Song Linqi

机构信息

Department of Chemistry, City University of Hong Kong, Hong Kong.

City University of Hong Kong Shenzhen Research Institute.

出版信息

Comput Struct Biotechnol J. 2024 Nov 13;23:4214-4221. doi: 10.1016/j.csbj.2024.11.006. eCollection 2024 Dec.

Abstract

MOTIVATION

Although several computational methods for predicting DNA methylation modifications have been developed, two main limitations persist: 1) All of the models are currently confined to binary predictors, which merely determine the presence or absence of DNA methylation modifications and thus prevent comprehensive analyses of the interrelations among varied modification types. Multi-class classification models for RNA modifications have been developed, and a comparable approach for DNA is essential. 2) Few previous studies offer adequate explanations of how models make decisions, instead relying on the extraction and visualization of attention matrices, which have identified few motifs and do not provide sufficient insights into the model decision-making process.

RESULT

In this study, we introduce the task of DNA methylation modification prediction as a multi-class classification problem for the first time. We present iResNetDM, a deep learning model that integrates Residual Networks (ResNet) with self-attention mechanisms. To the best of our knowledge, iResNetDM is the first model capable of distinguishing between four types of DNA methylation modifications. Our model not only demonstrates good performance across various DNA methylation modifications but can also capture relationships between different types of modifications. We used the integrated gradients technique to enhance the interpretability of the iResNetDM. This method can effectively elucidate the model's decision-making process, thus enabling the successful identification of multiple motifs. Notably, our model displays remarkable robustness, and can effectively identify unique motifs across different methylation modifications. We also compared the motifs discovered in various modifications and found that some had notable sequence similarities, suggesting that they may be subject to different types of modifications. This finding highlights the potential importance of these motifs in gene regulation.

摘要

动机

尽管已经开发了几种预测DNA甲基化修饰的计算方法,但仍然存在两个主要限制:1)目前所有模型都局限于二元预测器,只能确定DNA甲基化修饰的存在或不存在,因此无法全面分析不同修饰类型之间的相互关系。已经开发了用于RNA修饰的多类分类模型,因此一种类似的DNA方法至关重要。2)以前很少有研究充分解释模型是如何做出决策的,而是依赖于注意力矩阵的提取和可视化,而注意力矩阵识别出的基序很少,并且没有提供对模型决策过程的足够见解。

结果

在本研究中,我们首次将DNA甲基化修饰预测任务作为多类分类问题引入。我们提出了iResNetDM,这是一种将残差网络(ResNet)与自注意力机制相结合的深度学习模型。据我们所知,iResNetDM是第一个能够区分四种DNA甲基化修饰类型的模型。我们的模型不仅在各种DNA甲基化修饰上表现出良好的性能,而且还可以捕捉不同修饰类型之间的关系。我们使用集成梯度技术来增强iResNetDM的可解释性。这种方法可以有效地阐明模型的决策过程,从而成功识别多个基序。值得注意的是,我们的模型显示出显著的稳健性,并且可以有效地识别不同甲基化修饰中的独特基序。我们还比较了在各种修饰中发现的基序,发现其中一些具有明显的序列相似性,这表明它们可能受到不同类型的修饰。这一发现突出了这些基序在基因调控中的潜在重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2c0/11621598/3675b1aa43f4/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验