Suppr超能文献

利用可解释人工智能增强基于机器学习的慢性肾病预测。

Enhancing machine learning-based forecasting of chronic renal disease with explainable AI.

作者信息

Singamsetty Sanjana, Ghanta Swetha, Biswas Sujit, Pradhan Ashok

机构信息

Department of Computer Science and Engineering, School of Engineering and Sciences, SRM University, AP, Guntur, Andhra Pradesh, India.

Computer Science Department, Northumbria University, Newcastle, United Kingdom.

出版信息

PeerJ Comput Sci. 2024 Sep 26;10:e2291. doi: 10.7717/peerj-cs.2291. eCollection 2024.

Abstract

Chronic renal disease (CRD) is a significant concern in the field of healthcare, highlighting the crucial need of early and accurate prediction in order to provide prompt treatments and enhance patient outcomes. This article presents an end-to-end predictive model for the binary classification of CRD in healthcare, addressing the crucial need for early and accurate predictions to enhance patient outcomes. Through hyperparameter optimization using GridSearchCV, we significantly improve model performance. Leveraging a range of machine learning (ML) techniques, our approach achieves a high predictive accuracy of 99.07% for random forest, extra trees classifier, logistic regression with L2 penalty, and artificial neural networks (ANN). Through rigorous evaluation, the logistic regression with L2 penalty emerges as the top performer, demonstrating consistent performance. Moreover, integration of Explainable Artificial Intelligence (XAI) techniques, such as Local Interpretable Model-agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP), enhances interpretability and reveals insights into model decision-making. By emphasizing an end-to-end model development process, from data collection to deployment, our system enables real-time predictions and informed healthcare decisions. This comprehensive approach underscores the potential of predictive modeling in healthcare to optimize clinical decision-making and improve patient care outcomes.

摘要

慢性肾脏病(CRD)是医疗保健领域的一个重大问题,凸显了早期准确预测的迫切需求,以便提供及时治疗并改善患者预后。本文提出了一种用于医疗保健中CRD二元分类的端到端预测模型,满足了早期准确预测以改善患者预后的迫切需求。通过使用GridSearchCV进行超参数优化,我们显著提高了模型性能。利用一系列机器学习(ML)技术,我们的方法在随机森林、极端随机树分类器、L2正则化逻辑回归和人工神经网络(ANN)方面实现了99.07%的高预测准确率。经过严格评估,L2正则化逻辑回归表现最佳,展现出稳定的性能。此外,可解释人工智能(XAI)技术的集成,如局部可解释模型无关解释(LIME)和夏普利值加法解释(SHAP),增强了模型的可解释性,并揭示了模型决策的见解。通过强调从数据收集到部署的端到端模型开发过程,我们的系统实现了实时预测和明智的医疗决策。这种全面的方法强调了预测建模在医疗保健中优化临床决策和改善患者护理结果的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a78/11623017/3112e925464d/peerj-cs-10-2291-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验