Saferin Nilanjana, Haseeb Ibrahim, Taha Adam M, Beecroft Sarah E, Pillai Sangeetha, Neifer Asha E, Lakkuru Rudhasri, Kistler Brian P, Nawor Charlotte N, Malik Isa, Hasan Dena, Carlson Jonathan A, Zade Kareem K, Dressel Sydnee P, Carney Eileen M, Shah Radha, Gautam Shudhant, Vergis John, Neifer Kari L, Johnson Zachary V, Gustison Morgan L, Hall F Scott, Burkett James P
Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43606.
bioRxiv. 2024 Dec 4:2024.11.25.625285. doi: 10.1101/2024.11.25.625285.
Neurodevelopmental disorders (NDDs) have dramatically increased in prevalence to an alarming one in six children, and yet both causes and preventions remain elusive. Recent human epidemiology and animal studies have implicated developmental exposure to pyrethroid pesticides, one of the most common classes of pesticides in the US, as an environmental risk factor for autism and neurodevelopmental disorders. Our previous research has shown that low-dose chronic developmental pyrethroid exposure (DPE) changes folate metabolites in the adult mouse brain. We hypothesize that DPE acts directly on molecular targets in the folate metabolism pathway, and that high-dose maternal folate supplementation can prevent or reduce the biobehavioral effects of DPE. We exposed pregnant prairie vole dams chronically to vehicle or low-dose deltamethrin (3 mg/kg/3 days) with or without high-dose folate supplementation (methylfolate, 5 mg/kg/3 days). The resulting DPE offspring showed broad deficits in five behavioral domains relevant to neurodevelopmental disorders (including the social domain); increased plasma folate concentrations; and increased neural expression of SHMT1, a folate cycle enzyme. Maternal folate supplementation prevented most of the behavioral phenotypes (except for repetitive behaviors) and caused potentially compensatory changes in neural expression of FOLR1 and MTHFR, two folate-related proteins. We conclude that DPE causes neurodevelopmental disorder-relevant behavioral deficits; DPE directly alters aspects of folate metabolism; and preventative interventions targeting folate metabolism are effective in reducing, but not eliminating, the behavioral effects of DPE.
神经发育障碍(NDDs)的患病率急剧上升,达到令人震惊的六分之一儿童,然而其病因和预防方法仍然难以捉摸。最近的人类流行病学和动物研究表明,在美国最常见的农药类别之一拟除虫菊酯类农药的发育暴露,是自闭症和神经发育障碍的一个环境风险因素。我们之前的研究表明,低剂量慢性发育性拟除虫菊酯暴露(DPE)会改变成年小鼠大脑中的叶酸代谢物。我们假设DPE直接作用于叶酸代谢途径中的分子靶点,并且高剂量的母体叶酸补充可以预防或减少DPE的生物行为影响。我们将怀孕的草原田鼠母鼠长期暴露于载体或低剂量溴氰菊酯(3毫克/千克/3天),同时给予或不给予高剂量叶酸补充(甲基叶酸,5毫克/千克/3天)。由此产生的DPE后代在与神经发育障碍相关的五个行为领域(包括社交领域)表现出广泛的缺陷;血浆叶酸浓度升高;以及叶酸循环酶SHMT1的神经表达增加。母体叶酸补充预防了大多数行为表型(除了重复行为),并导致叶酸相关蛋白FOLR1和MTHFR的神经表达发生潜在的代偿性变化。我们得出结论,DPE会导致与神经发育障碍相关的行为缺陷;DPE直接改变叶酸代谢的某些方面;针对叶酸代谢的预防性干预措施在减少但不能消除DPE的行为影响方面是有效的。