Suppr超能文献

探索健康信息系统中的信任动态:患者健康状况对信息源偏好的影响。

Exploring trust dynamics in health information systems: the impact of patients' health conditions on information source preferences.

作者信息

Song Mingming, Elson Joel, Nguyen Tin, Obasi Sharon, Pintar John, Bastola Dhundy

机构信息

School of Interdisciplinary Informatics, University of Nebraska Omaha, Omaha, NE, United States.

College of Arts and Sciences, University of Nebraska Omaha, Omaha, NE, United States.

出版信息

Front Public Health. 2024 Nov 22;12:1478502. doi: 10.3389/fpubh.2024.1478502. eCollection 2024.

Abstract

INTRODUCTION

Health information systems (HISs) should provide accessible and high-quality information to patients. However, the challenge lies in understanding patients' trust preferences for health information. This study explores how different information sources (e.g., online platforms, interpersonal sources) are trusted under varying health conditions, focusing on symptom intensity and disease type.

METHODS

Using a 2 × 2 × 4 between-subject design, 243 participants from a US college were presented with vignettes of acute or chronic diseases with varying symptom intensities and information sources. Participants rated their trust levels, including both cognitive and behavioral trust, in the health information and recommendations provided by one of the information sources, which was randomly assigned. Logistic regression and ANOVA were employed for the statistical analysis.

RESULTS

The analysis results revealed that trust is generally higher for interpersonal sources like doctors and family/friends compared to online sources like WebMD and Wikipedia when patients are making health decisions. Doctors are the most trusted source during health-related decision making. However, there are no significant differences in cognitive trust among interpersonal sources or among online sources. Furthermore, symptom intensity and disease type did not significantly alter trust levels across various information sources. These findings suggest that people prefer professional medical advice regardless of their health conditions.

DISCUSSION

The study highlights the need for HIS to incorporate features that provide "doctor-verified" information and promote interactive engagement to enhance patients' trust in information source. Additionally, it distinguishes between cognitive and behavioral trust, revealing distinct trust patterns that can inform the strategic development of HIS for varied health conditions. Understanding these trust dynamics can inform the design of effective, patient-centered HIS that better support health education, information seeking, and decision-making.

摘要

引言

健康信息系统(HISs)应向患者提供可获取且高质量的信息。然而,挑战在于理解患者对健康信息的信任偏好。本研究探讨了在不同健康状况下,不同信息来源(如在线平台、人际来源)是如何被信任的,重点关注症状强度和疾病类型。

方法

采用2×2×4组间设计,向来自美国一所大学的243名参与者展示了具有不同症状强度和信息来源的急性或慢性疾病案例。参与者对随机分配的其中一个信息来源提供的健康信息和建议的信任程度进行评分,包括认知信任和行为信任。采用逻辑回归和方差分析进行统计分析。

结果

分析结果显示,在患者做出健康决策时,与像WebMD和维基百科这样的在线来源相比,医生和家人/朋友等人际来源通常更受信任。在与健康相关的决策过程中,医生是最受信任的来源。然而,人际来源之间或在线来源之间在认知信任方面没有显著差异。此外,症状强度和疾病类型并未显著改变各信息来源的信任水平。这些发现表明,无论健康状况如何,人们都更喜欢专业的医疗建议。

讨论

该研究强调健康信息系统需要纳入提供“医生验证”信息的功能,并促进互动参与,以增强患者对信息来源的信任。此外,它区分了认知信任和行为信任,揭示了不同的信任模式,可为针对不同健康状况的健康信息系统的战略发展提供参考。理解这些信任动态可以为设计有效的、以患者为中心的健康信息系统提供参考,从而更好地支持健康教育、信息寻求和决策制定。

相似文献

本文引用的文献

4
Editorial: Digital information for patient education.社论:用于患者教育的数字信息
Front Public Health. 2023 May 26;11:1211285. doi: 10.3389/fpubh.2023.1211285. eCollection 2023.
5
How and why humans trust: A meta-analysis and elaborated model.人类如何以及为何信任:一项元分析及详尽模型
Front Psychol. 2023 Mar 27;14:1081086. doi: 10.3389/fpsyg.2023.1081086. eCollection 2023.
6
Social exchange theory: Systematic review and future directions.社会交换理论:系统综述与未来方向。
Front Psychol. 2023 Jan 12;13:1015921. doi: 10.3389/fpsyg.2022.1015921. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验