Lv Yulin, Song Benli, Yang Guang, Wang Yuting, Wu Zeyu, Si Minggui, Yang Zongzheng, Chen Huilin, Liu Chen, Li Min, Zhang Yinshi, Qiao Zengying, Wang Lu, Xu Wanhai
NHC Key Laboratory, of Molecular Probes and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China.
Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150001, China.
Adv Sci (Weinh). 2025 Feb;12(5):e2409425. doi: 10.1002/advs.202409425. Epub 2024 Dec 9.
Tumor therapeutic strategies based on mitochondrial damage have become an emerging trend. However, the low drug delivery efficiency caused by lysosomal sequestration and the activation of protective mitochondrial autophagy severely restricts the therapeutic efficacy. Herein, an in situ transformable nanoparticle named KCKT is developed to promote lysosomal escape and directly damage mitochondria while blocking mitochondrial autophagy. KCKT exhibits acid responsiveness for precise self-assembly into nanofibers within the lysosomes of cancer cells. The massive accumulation of nanofibers and excessive production of reactive oxygen species (ROS) under sonodynamic therapy synergistically induce lysosomal damage. This facilitates the escape of nanofibers from lysosomal sequestration, thereby enhancing drug delivery. Subsequently, the escaped nanofibers specifically aggregate around the mitochondria for long-term retention and generate ROS under ultrasound irradiation to induce mitochondrial damage. Notably, due to lysosomal dysfunction, damaged mitochondria cannot be cleared by autophagy, further aggravating oxidative damage. These results reveal that KCKT effectively improves drug delivery and mitochondria-targeted therapy efficiency by blocking protective autophagy. These findings hold significant potential for advancing the field of mitochondria-targeted therapy.
基于线粒体损伤的肿瘤治疗策略已成为一种新兴趋势。然而,溶酶体隔离和保护性线粒体自噬的激活导致的低药物递送效率严重限制了治疗效果。在此,开发了一种名为KCKT的原位可转化纳米颗粒,以促进溶酶体逃逸,直接损伤线粒体,同时阻断线粒体自噬。KCKT表现出酸响应性,可在癌细胞的溶酶体内精确自组装成纳米纤维。纳米纤维的大量积累以及声动力疗法下活性氧(ROS)的过量产生协同诱导溶酶体损伤。这有助于纳米纤维从溶酶体隔离中逃逸,从而提高药物递送。随后,逃逸的纳米纤维特异性地聚集在线粒体周围以长期保留,并在超声照射下产生活性氧以诱导线粒体损伤。值得注意的是,由于溶酶体功能障碍,受损的线粒体无法通过自噬清除,进一步加重氧化损伤。这些结果表明,KCKT通过阻断保护性自噬有效地提高了药物递送和线粒体靶向治疗效率。这些发现为推进线粒体靶向治疗领域具有重要潜力。