文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

细胞器靶向治疗:实现精准肿瘤学的系统设计全面综述。

Organelle-targeted therapies: a comprehensive review on system design for enabling precision oncology.

机构信息

Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, 201804, Shanghai, China.

School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA.

出版信息

Signal Transduct Target Ther. 2022 Nov 19;7(1):379. doi: 10.1038/s41392-022-01243-0.


DOI:10.1038/s41392-022-01243-0
PMID:36402753
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9675787/
Abstract

Cancer is a major threat to human health. Among various treatment methods, precision therapy has received significant attention since the inception, due to its ability to efficiently inhibit tumor growth, while curtailing common shortcomings from conventional cancer treatment, leading towards enhanced survival rates. Particularly, organelle-targeted strategies enable precise accumulation of therapeutic agents in organelles, locally triggering organelle-mediated cell death signals which can greatly reduce the therapeutic threshold dosage and minimize side-effects. In this review, we comprehensively discuss history and recent advances in targeted therapies on organelles, specifically including nucleus, mitochondria, lysosomes and endoplasmic reticulum, while focusing on organelle structures, organelle-mediated cell death signal pathways, and design guidelines of organelle-targeted nanomedicines based on intervention mechanisms. Furthermore, a perspective on future research and clinical opportunities and potential challenges in precision oncology is presented. Through demonstrating recent developments in organelle-targeted therapies, we believe this article can further stimulate broader interests in multidisciplinary research and technology development for enabling advanced organelle-targeted nanomedicines and their corresponding clinic translations.

摘要

癌症是严重威胁人类健康的一类疾病。在众多治疗方法中,精准治疗自诞生以来就备受关注,因为它能够高效抑制肿瘤生长,同时减少传统癌症治疗的常见缺点,提高生存率。特别是细胞器靶向策略可以使治疗剂在细胞器中精确积累,局部触发细胞器介导的细胞死亡信号,从而大大降低治疗阈值剂量并最小化副作用。在这篇综述中,我们全面讨论了细胞器靶向治疗的历史和最新进展,特别是细胞核、线粒体、溶酶体和内质网,同时重点介绍了细胞器结构、细胞器介导的细胞死亡信号通路以及基于干预机制的细胞器靶向纳米药物的设计原则。此外,还对精准肿瘤学未来的研究和临床机遇以及潜在挑战提出了展望。通过展示细胞器靶向治疗的最新进展,我们相信本文能够进一步激发人们对多学科研究和技术发展的广泛兴趣,以实现先进的细胞器靶向纳米药物及其相应的临床转化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4ab/9675787/fd5b42a2f54e/41392_2022_1243_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4ab/9675787/ee9590c643b3/41392_2022_1243_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4ab/9675787/44467d7b53a0/41392_2022_1243_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4ab/9675787/7c0e3680bdf6/41392_2022_1243_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4ab/9675787/650bb0b4a64d/41392_2022_1243_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4ab/9675787/e5bdf6ba51aa/41392_2022_1243_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4ab/9675787/fd5b42a2f54e/41392_2022_1243_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4ab/9675787/ee9590c643b3/41392_2022_1243_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4ab/9675787/44467d7b53a0/41392_2022_1243_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4ab/9675787/7c0e3680bdf6/41392_2022_1243_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4ab/9675787/650bb0b4a64d/41392_2022_1243_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4ab/9675787/e5bdf6ba51aa/41392_2022_1243_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4ab/9675787/fd5b42a2f54e/41392_2022_1243_Fig6_HTML.jpg

相似文献

[1]
Organelle-targeted therapies: a comprehensive review on system design for enabling precision oncology.

Signal Transduct Target Ther. 2022-11-19

[2]
Targeting sub-cellular organelles for boosting precision photodynamic therapy.

Chem Commun (Camb). 2024-10-10

[3]
In Response to Precision Medicine: Current Subcellular Targeting Strategies for Cancer Therapy.

Adv Mater. 2023-5

[4]
Targeting the organelle for radiosensitization in cancer radiotherapy.

Asian J Pharm Sci. 2024-4

[5]
Organelle-Targeted Photosensitizers for Precision Photodynamic Therapy.

ACS Appl Mater Interfaces. 2021-5-5

[6]
Organelle Targeted Drug Delivery: Key Challenges, Recent Advancements and Therapeutic Implications.

Endocr Metab Immune Disord Drug Targets. 2024

[7]
Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance.

Drug Resist Updat. 2017-5-21

[8]
Future of nanotherapeutics: Targeting the cellular sub-organelles.

Biomaterials. 2016-4-26

[9]
Functional Materials for Subcellular Targeting Strategies in Cancer Therapy: Progress and Prospects.

Adv Mater. 2023-9-4

[10]
Nanomedicine in cancer therapy.

Signal Transduct Target Ther. 2023-8-7

引用本文的文献

[1]
Lysosome-dependent cell death: disease implications and potential therapeutic targets.

Mol Biol Rep. 2025-9-10

[2]
LocPro: A deep learning-based prediction of protein subcellular localization for promoting multi-directional pharmaceutical research.

J Pharm Anal. 2025-8

[3]
Research Progress on Nucleus-Targeting Carbon Nanoparticles for Tumor Imaging and Therapy.

Int J Nanomedicine. 2025-8-5

[4]
Triphenylphosphine-Based Mitochondrial Targeting Nanocarriers: Advancing Cancer Therapy.

Clin Pharmacol. 2025-6-10

[5]
An endoplasmic reticulum-targeting photodynamic AMPK agonist activates breast cancer immunotherapy through promoting immunogenic cell death and downregulation of PD-L1.

Acta Pharmacol Sin. 2025-6-4

[6]
DNA Nanostructures for Rational Regulation of Cellular Organelles.

JACS Au. 2025-3-26

[7]
Organelle-oriented nanomedicines in tumor therapy: Targeting, escaping, or collaborating?

Bioact Mater. 2025-3-13

[8]
Covalent organic frameworks in cancer theranostics: advancing biomarker detection and tumor-targeted therapy.

Arch Pharm Res. 2025-3

[9]
Precision medicine in colorectal cancer: genomics profiling and targeted treatment.

Front Pharmacol. 2025-2-27

[10]
Biomimetic Atorvastatin Self-Assembled Nanomedicine Inhibits the Cyclooxygenase-2/Prostaglandin E2 Pathway Enhanced Photothermal and Antitumor Immunity.

Biomater Res. 2025-3-4

本文引用的文献

[1]
Inducing endoplasmic reticulum stress in cancer cells using graphene oxide-based nanoparticles.

Nanoscale Adv. 2020-8-19

[2]
Cancer treatment by magneto-mechanical effect of particles, a review.

Nanoscale Adv. 2020-6-19

[3]
Physics of the Nuclear Pore Complex: Theory, Modeling and Experiment.

Phys Rep. 2021-7-25

[4]
Subcellular delivery of lipid nanoparticles to endoplasmic reticulum and mitochondria.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022-9

[5]
Inhibition of thioredoxin reductase by natural anticancer candidate β-lapachone accounts for triggering redox activation-mediated HL-60 cell apoptosis.

Free Radic Biol Med. 2022-2-20

[6]
Karyopherin-mediated nucleocytoplasmic transport.

Nat Rev Mol Cell Biol. 2022-5

[7]
Lipid Nanoparticle-Mediated Induction of Endoplasmic Reticulum Stress in Cancer Cells.

ACS Appl Bio Mater. 2019-9-16

[8]
Take Me Home, Protein Roads: Structural Insights into Signal Peptide Interactions during ER Translocation.

Int J Mol Sci. 2021-11-1

[9]
Active mitochondrial respiration in cancer: a target for the drug.

Mol Cell Biochem. 2022-2

[10]
Intertwined and Finely Balanced: Endoplasmic Reticulum Morphology, Dynamics, Function, and Diseases.

Cells. 2021-9-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索