Suppr超能文献

使用患者报告结局指标的定量研究中的反应转移结果:一项元回归分析

Response shift results of quantitative research using patient-reported outcome measures: a meta-regression analysis.

作者信息

Sawatzky Richard, Verdam Mathilde G E, Dubuy Yseulys, Sajobi Tolulope T, Russell Lara, Awosoga Oluwagbohunmi A, Ademola Ayoola, Böhnke Jan R, Lawal Oluwaseyi, Brobbey Anita, Anota Amélie, Lix Lisa M, Sprangers Mirjam A G, Sébille Véronique

机构信息

School of Nursing, Trinity Western University, 7600 Glover Road, Langley, BC, V2Y 1Y1, Canada.

Centre for Advancing Health Outcomes, Providence Health Care Research Institute, Vancouver, Canada.

出版信息

Qual Life Res. 2025 May;34(5):1393-1406. doi: 10.1007/s11136-024-03867-x. Epub 2024 Dec 9.

Abstract

PURPOSE

Our objectives were to identify characteristics of response shift studies using patient-reported outcomes (PROMs) that explain variability in (1) the detection and (2) the magnitude of response shift effects.

METHODS

We conducted a systematic review of quantitative studies published before June 2023. First, two-level multivariable logistic regression models (effect- and sample-levels) were used to explain variability in the probability of finding a response shift effect. Second, variability in effect sizes (standardized mean differences) was investigated with 3-level meta-regression models (participant-, effect- and sample-levels). Explanatory variables identified via the purposeful selection methodology included response shift method and type, and population-, study design-, PROM- and study-quality characteristics.

RESULTS

First, logistic regression analysis of 5597 effects from 206 samples in 171 studies identified variables explaining 41.5% of the effect-level variance, while no variables explained sample-level variance. The average probability of response shift detection is 0.20 (95% CI: 0.17-0.28). Variation in detection was predominantly explained by response shift methods and type (recalibration vs. reprioritization/reconceptualization). Second, effect sizes were analyzed for 769 effects from 114 samples and 96 studies based on the then-test and structural equation modeling methods. Meta-regression analysis identified variables explaining 11.6% of the effect-level variance and 26.4% of the sample-level variance, with an average effect size of 0.30 (95% CI: 0.26-0.34).

CONCLUSION

Response shift detection is influenced by study design and methods. Insights into the variables explaining response shift effects can be used to interpret results of other comparable studies using PROMs and inform the design of future response shift studies.

摘要

目的

我们的目标是确定使用患者报告结局(PROMs)的反应转移研究的特征,这些特征可解释(1)反应转移效应的检测以及(2)反应转移效应大小方面的变异性。

方法

我们对2023年6月之前发表的定量研究进行了系统综述。首先,使用两级多变量逻辑回归模型(效应水平和样本水平)来解释发现反应转移效应的概率的变异性。其次,使用三级元回归模型(参与者、效应和样本水平)研究效应大小(标准化均值差异)的变异性。通过有目的选择方法确定的解释变量包括反应转移方法和类型,以及人群、研究设计、PROM和研究质量特征。

结果

首先,对171项研究中206个样本的5,597个效应进行逻辑回归分析,确定的变量解释了效应水平方差的41.5%,而没有变量解释样本水平方差。反应转移检测的平均概率为0.20(95%CI:0.17 - 0.28)。检测的变异性主要由反应转移方法和类型(重新校准与重新排序/重新概念化)解释。其次,基于事后检验和结构方程建模方法,对114个样本和96项研究的769个效应的效应大小进行了分析。元回归分析确定的变量解释了效应水平方差的11.6%和样本水平方差的26.4%,平均效应大小为0.30(95%CI:0.26 - 0.34)。

结论

反应转移检测受研究设计和方法的影响。对解释反应转移效应的变量的深入了解可用于解释其他使用PROMs的可比研究的结果,并为未来反应转移研究的设计提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ab6/12064579/775d503a30f5/11136_2024_3867_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验