Colasante Claudia, Jednakowski Julia, Valerius Klaus-Peter, Li Xiaoling, Baumgart-Vogt Eveline
Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany.
The Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina, United States of America.
PLoS One. 2024 Dec 9;19(12):e0313445. doi: 10.1371/journal.pone.0313445. eCollection 2024.
Human peroxisomal biogenesis disorders of the Zellweger syndrome spectrum affect skeletal development and induce tooth malformations. Whereas several peroxisomal knockout mouse studies elucidated the pathogenesis of skeletal defects, little information is available on how dental pathologies arise in peroxisomal biogenesis disorder patients. To understand the impact of severe peroxisomal dysfunction on early odontogenesis, here we performed morphometric studies on developing molars of new-born Pex11b knockout mice. Immunofluorescence analysis revealed reduced peroxisome number and mistargeting of the peroxisomal matrix enzyme catalase to the cytoplasm in several dental cell types of the Pex11b knockout animals. We also observed secondary mitochondrial alterations, comprising decreased staining of mitochondrial superoxide dismutase and of complex IV in cells of the developing molar. The peroxisomal defect caused by the PEX11b knockout also decreased the staining of cytokeratin intermediate filaments and of the secretory proteins amelogenin, osteopontin and osteocalcin. Interestingly, the staining of the gap junction protein connexin 43, an important modulator of tissue development, was also decreased, possibly causing the observed cellular disarrangement within the inner enamel epithelium and the odontoblast palisade. Taken together, our results show that the severe phenotype associated with the PEX11b knockout results in a reduction of the number of peroxisomes in dental cells and causes a delay odontogenesis. This adds a new component to the already described symptomatic spectrum induced by severe peroxisomal defects.
人类过氧化物酶体生物发生障碍的泽尔韦格综合征谱系会影响骨骼发育并导致牙齿畸形。虽然多项过氧化物酶体基因敲除小鼠研究阐明了骨骼缺陷的发病机制,但关于过氧化物酶体生物发生障碍患者牙齿病变如何产生的信息却很少。为了了解严重的过氧化物酶体功能障碍对早期牙齿发育的影响,我们对新生的Pex11b基因敲除小鼠正在发育的磨牙进行了形态计量学研究。免疫荧光分析显示,在Pex11b基因敲除动物的几种牙细胞类型中,过氧化物酶体数量减少,过氧化物酶体基质酶过氧化氢酶错误定位于细胞质。我们还观察到继发性线粒体改变,包括发育中磨牙细胞中线粒体超氧化物歧化酶和复合物IV的染色减少。由PEX11b基因敲除引起的过氧化物酶体缺陷还降低了细胞角蛋白中间丝以及分泌蛋白釉原蛋白、骨桥蛋白和骨钙素的染色。有趣的是,组织发育的重要调节因子间隙连接蛋白43的染色也减少了,这可能导致了在内釉上皮和成牙本质细胞栅栏内观察到的细胞排列紊乱。综上所述,我们的结果表明,与PEX11b基因敲除相关的严重表型导致牙细胞中过氧化物酶体数量减少,并导致牙齿发育延迟。这为严重过氧化物酶体缺陷引起的已描述症状谱增加了一个新的组成部分。