Suppr超能文献

用于生物医学应用的AZ31镁合金上硅烷-壳聚糖-氧化石墨烯复合涂层的生物降解性和力学性能

Biodegradation and mechanical performance of Silane-chitosan-graphene oxide composite coating on AZ31 magnesium alloys for biomedical applications.

作者信息

Atallah Mohamed Salah, Khlifi Akila, Khlifi Kaouther, Barhoumi Najoua, Nkele Marie Jonas Sima, Atapour Masoud, Said Ayoub Hadj, Sallem Haifa

机构信息

Laboratory of mechanics materials and processes, National high school of engineering of Tunis (ENSIT), 5 rue Taha HussienMonfleury, 1089 Tunis Bab Alleoua, Tunis, Tunisia.

Centre for Research on Microelectronics &Nanotechnology (CRMN), Technopole of Sousse, Sahloul (BP 344 Sahloul Sousse), Tunisia.

出版信息

Int J Biol Macromol. 2025 Jan;287:138568. doi: 10.1016/j.ijbiomac.2024.138568. Epub 2024 Dec 7.

Abstract

Biodegradable magnesium alloy medical implants have attracted considerable interest thanks to their remarkable biocompatibility and mechanical properties. However, the rapid corrosion rate of magnesium alloys in physiological environments presents a major challenge to their practical application. Therefore, this study attempted to design a silane/chitosan /graphene oxide composite coating that reduces the corrosion and enhances the biodegradation of magnesium alloys used in temporary implants. The composite fabrication process adopted a cost-effective spin-coating technique providing a uniform coating of magnesium alloy substrates. Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, scanning electron microscopy (SEM) and energy dispersion spectroscopy (EDS) results showed a dense and compact silane/chitosan/graphene oxide (Silane/CS/GO) coating on the magnesium coated alloy surface. The mechanical properties of the fabricated silane/chitosan/graphene oxide composite were also investigated by microindentation and scratch tests. The hardness of the magnesium alloy increased from ~268 HV ±13.4 to ~644.13 HV ± 32.2 upon the application of the coating. Moreover, the results showed that the cohesive critical load (L) of the ternary composite was greater than L ~ 3.02 ± 0.15 N. In addition, compared to uncoated AZ31 alloys, the friction coefficient and wear volume of the ternary composite decreased from ~0.13 ± 0.02 to ~0.07 ± 0.004 and from ~18 to ~0.04 (10μm), respectively. Finally, the corrosion of the composite coating was assessed in simulated body fluid (SBF) in vitro at 37 °C. Hydrogen evolution results revealed that graphene oxide seemed to delay the diffusion of corrosive ions into the Mg matrix, while Silane prevented the coupling of GO graphene oxide sheets to the metal surface. Consequently, silane / chitosan /graphene oxide composite coatings could be a very useful material for coating magnesium implant devices. It contributed to reduce the corrosion of the substrate and alleviate the cost and discomfort of implants.

摘要

可生物降解镁合金医用植入物因其卓越的生物相容性和机械性能而备受关注。然而,镁合金在生理环境中的快速腐蚀速率对其实际应用构成了重大挑战。因此,本研究试图设计一种硅烷/壳聚糖/氧化石墨烯复合涂层,以降低用于临时植入物的镁合金的腐蚀速率并增强其生物降解性能。复合涂层的制备过程采用了具有成本效益的旋涂技术,可在镁合金基体上形成均匀的涂层。傅里叶变换红外光谱(ATR-FTIR)、拉曼光谱、扫描电子显微镜(SEM)和能谱分析(EDS)结果表明,在镁合金涂层表面形成了致密且紧凑的硅烷/壳聚糖/氧化石墨烯(Silane/CS/GO)涂层。还通过微压痕和划痕试验研究了所制备的硅烷/壳聚糖/氧化石墨烯复合材料的机械性能。施加涂层后,镁合金的硬度从约268 HV±13.4提高到约644.13 HV±32.2。此外,结果表明三元复合材料的内聚临界载荷(L)大于L≈3.02±0.15 N。此外,与未涂层的AZ31合金相比,三元复合材料的摩擦系数和磨损体积分别从约0.13±0.02降至约0.07±0.004,以及从约18降至约0.04(10μm)。最后,在37°C的体外模拟体液(SBF)中评估了复合涂层的腐蚀情况。析氢结果表明氧化石墨烯似乎延迟了腐蚀性离子向镁基体中的扩散,而硅烷则阻止了氧化石墨烯片与金属表面的结合。因此,硅烷/壳聚糖/氧化石墨烯复合涂层可能是一种用于涂覆镁植入装置的非常有用的材料。它有助于降低基体的腐蚀,并减轻植入物的成本和不适感。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验