Suppr超能文献

负热膨胀行为助力低温下良好的电化学储能性能。

Negative Thermal Expansion Behavior Enabling Good Electrochemical-Energy-Storage Performance at Low Temperatures.

作者信息

Li Qiao, Yang Liting, Liang Guisheng, Yu Jiahui, Huang Shaowu, Wu Liming, Lin Chunfu, Che Renchao

机构信息

College of Physics, Donghua University, Shanghai, 201620, China.

Institute of Materials for Energy and Environment, School of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China.

出版信息

Angew Chem Int Ed Engl. 2025 Feb 10;64(7):e202419300. doi: 10.1002/anie.202419300. Epub 2024 Dec 17.

Abstract

Metal-ion batteries (such as lithium-ion batteries) are very popular energy-storage devices nowadays. However, low temperatures cause their poor electrochemical kinetics and performance, significantly limiting their wide applications in cold environments. Here, we propose that electrochemical energy-storage materials with negative-thermal-expansion (NTE) behavior can enable good low-temperature electrochemical performance, which becomes a new strategy to tackle the low-temperature issues of metal-ion batteries. LiTi(PO) (LTP) with an a-direction thermal expansion coefficient of -1.1×10 K is used as a model material. As the temperature decreases, the transverse vibration of O atoms not only increases the transverse distances among O atoms connected to Li/Ti atoms, but also widens the Li-transport channels and enlarges the Li-insertion sites along the [12 ] direction, which are mainly controlled by the lattice parameter a. Consequently, carbon-coated LTP (C-LTP) retains good electrochemical performance at -10 °C, including fast Li diffusivity (84 % of that at 25 °C), large capacity (96 % of the theoretical capacity), and superior rate capability (83 % capacity retention at 5 C vs. 0.5 C). Moreover, the more open crystal structure of LTP at the lower temperature allows smaller maximum unit-cell-volume expansion, resulting in better cycling stability of C-LTP at -10 °C (96.8 % capacity retention over 1000 cycles at 2 C).

摘要

金属离子电池(如锂离子电池)是如今非常流行的储能装置。然而,低温会导致其电化学动力学和性能变差,这严重限制了它们在寒冷环境中的广泛应用。在此,我们提出具有负热膨胀(NTE)行为的电化学储能材料能够实现良好的低温电化学性能,这成为解决金属离子电池低温问题的一种新策略。热膨胀系数在a方向为 -1.1×10 K的LiTi(PO)(LTP)被用作模型材料。随着温度降低,O原子的横向振动不仅增加了与Li/Ti原子相连的O原子之间的横向距离,还拓宽了Li传输通道,并沿[12 ]方向扩大了Li嵌入位点,这些主要由晶格参数a控制。因此,碳包覆的LTP(C-LTP)在 -10°C时仍保持良好的电化学性能,包括快速的Li扩散率(25°C时的84%)、大容量(理论容量的96%)以及优异的倍率性能(5 C时相对于0.5 C有83%的容量保持率)。此外,LTP在较低温度下更开放的晶体结构使得最大晶胞体积膨胀更小,从而使C-LTP在 -10°C时具有更好的循环稳定性(在2 C下1000次循环后容量保持率为96.8%)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验