Suppr超能文献

预测有创机械通气撤机失败的临床预测评分:作用与局限性

Clinical prediction scores predicting weaning failure from invasive mechanical ventilation: Role and limitations.

作者信息

Gupta Anish, Singh Omender, Juneja Deven

机构信息

Institute of Critical Care Medicine, Max Hospital, Gurugram 122022, Haryana, India.

Institute of Critical Care Medicine, Max Super Specialty Hospital, New Delhi 110017, India.

出版信息

World J Crit Care Med. 2024 Dec 9;13(4):96482. doi: 10.5492/wjccm.v13.i4.96482.

Abstract

Invasive mechanical ventilation (IMV) has become integral to modern-day critical care. Even though critically ill patients frequently require IMV support, weaning from IMV remains an arduous task, with the reported weaning failure (WF) rates being as high as 50%. Optimizing the timing for weaning may aid in reducing time spent on the ventilator, associated adverse effects, patient discomfort, and medical care costs. Since weaning is a complex process and WF is often multi-factorial, several weaning scores have been developed to predict WF and aid decision-making. These scores are based on the patient's physiological and ventilatory parameters, but each has limitations. This review highlights the current role and limitations of the various clinical prediction scores available to predict WF.

摘要

有创机械通气(IMV)已成为现代重症监护不可或缺的一部分。尽管重症患者经常需要IMV支持,但撤机仍然是一项艰巨的任务,据报道撤机失败(WF)率高达50%。优化撤机时机可能有助于减少机械通气时间、相关不良反应、患者不适和医疗费用。由于撤机是一个复杂的过程,且WF往往是多因素导致的,因此已经开发了几种撤机评分来预测WF并辅助决策。这些评分基于患者的生理和通气参数,但每种评分都有局限性。本综述强调了目前用于预测WF的各种临床预测评分的作用和局限性。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验