Suppr超能文献

弥合癫痫领域的沟通差距:利用大语言模型从在线讨论中揭示患者行为及关切的见解。

Bridging the conversational gap in epilepsy: Using large language models to reveal insights into patient behavior and concerns from online discussions.

作者信息

Fennig Uriel, Yom-Tov Elad, Savitzky Leehe, Nissan Johnatan, Altman Keren, Loebenstein Roni, Boxer Marina, Weinberg Nitai, Gofrit Shany Guly, Maggio Nicola

机构信息

Department of Neurology, Sheba Medical Center at Tel Hashomer, Ramat Gan, Israel.

Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.

出版信息

Epilepsia. 2025 Mar;66(3):686-699. doi: 10.1111/epi.18226. Epub 2024 Dec 10.

Abstract

OBJECTIVE

This study was undertaken to explore the experiences and concerns of people living with epilepsy by analyzing discussions in an online epilepsy community, using large language models (LLMs) to identify themes, demographic patterns, and associations with emotional distress, substance use, and suicidal ideation.

METHODS

We analyzed 56 970 posts and responses to them from 21 906 users on the epilepsy forum (subreddit) of Reddit and 768 504 posts from the same users in other subreddits, between 2010 and 2023. LLMs, validated against human labeling, were used to identify 23 recurring themes, assess demographic differences, and examine cross-posting to depression- and suicide-related subreddits. Hazard ratios (HRs) were calculated to assess the association between specific themes and activity in mental health forums.

RESULTS

Prominent topics included seizure descriptions, medication management, stigma, drug and alcohol use, and emotional well-being. The posts on topics less likely to be discussed in clinical settings had the highest engagement. Younger users focused on stigma and emotional issues, whereas older users discussed medical treatments. Posts about emotional distress (HR = 1.3), postictal state (HR = 1.4), surgical treatment (HR = .7), and work challenges (HR = 1.6) predicted activity in a subreddit associated with suicidal ideation, whereas emotional distress (HR = 1.5), surgical treatment (HR = .6), and stigma (HR = 1.3) predicted activity in the depression subreddit. Substance use discussions showed a temporal pattern of association with seizure descriptions, implying possible opportunities for intervention.

SIGNIFICANCE

LLM analysis of online epilepsy communities provides novel insights into patient concerns often overlooked in clinical settings. These findings may improve patient-provider communication, inform personalized interventions, and support the development of patient-reported outcome measures. Additionally, hazard models can help identify at-risk individuals, offering opportunities for early mental health interventions.

摘要

目的

本研究旨在通过分析一个在线癫痫社区的讨论,利用大语言模型(LLMs)来识别主题、人口统计学模式以及与情绪困扰、物质使用和自杀意念的关联,从而探索癫痫患者的经历和担忧。

方法

我们分析了2010年至2023年间Reddit上癫痫论坛(子版块)中21906名用户的56970条帖子及对它们的回复,以及这些用户在其他子版块中的768504条帖子。经过人工标注验证的大语言模型被用于识别23个反复出现的主题、评估人口统计学差异,并检查向与抑郁和自杀相关子版块的交叉发帖情况。计算风险比(HRs)以评估特定主题与心理健康论坛活动之间的关联。

结果

突出的主题包括发作描述、药物管理、耻辱感、药物和酒精使用以及情绪健康。在临床环境中较少讨论的主题的帖子参与度最高。年轻用户关注耻辱感和情绪问题,而年长用户讨论医疗治疗。关于情绪困扰(HR = 1.3)、发作后状态(HR = 1.4)、手术治疗(HR = 0.7)和工作挑战(HR = 1.6)的帖子预测了与自杀意念相关子版块的活动,而情绪困扰(HR = 1.5)、手术治疗(HR = 0.6)和耻辱感(HR = 1.3)预测了抑郁子版块的活动。物质使用讨论显示出与发作描述的时间关联模式,这意味着可能存在干预机会。

意义

对在线癫痫社区的大语言模型分析为临床环境中经常被忽视的患者担忧提供了新的见解。这些发现可能改善医患沟通,为个性化干预提供信息,并支持患者报告结局指标的开发。此外,风险模型可以帮助识别高危个体,为早期心理健康干预提供机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验